Journal of Medicinal Chemistry

Synthesis and Structure–Affinity Relationships of Selective High-Affinity 5-HT₄ Receptor Antagonists: Application to the Design of New Potential Single Photon Emission Computed Tomography Tracers

Emmanuelle Dubost,[†] Noé Dumas,[‡] Christine Fossey,[†] Rosa Magnelli,[†] Sabrina Butt-Gueulle,[†] Céline Ballandonne,[†] Daniel H. Caignard,[§] Fabienne Dulin,[†] Jana Sopkova de-Oliveira Santos,[†] Philippe Millet,[‡] Yves Charnay,[‡] Sylvain Rault,[†] Thomas Cailly,[†] and Frederic Fabis^{*,†}

[†]UFR des Sciences Pharmaceutiques, Université de Caen Basse-Normandie, EA 4258 CERMN, FR CNRS 3038 INC3M, SF-4206 ICORE, Boulevard Becquerel, F-14032 Caen, France

[‡]Unité de Morphologie et Unité de Neuroimagerie, Service de Neuropsychiatrie, Hôpitaux Universitaires de Genève, Ch. du Petit-Bel-Air, 2, CH1225 Chêne-Bourg/Genève, Switzerland

[§]Institut de Recherches Servier, 125 Chemin de Ronde, F-78290 Croissy sur Seine, France

(5) Supporting Information

ABSTRACT: The work described herein aims at finding new potential ligands for the brain imaging of 5-HT₄ receptors (5-HT₄Rs) using single-photon emission computed tomography (SPECT). Starting from the nonsubstituted phenanthridine compound 4a, exhibiting a K_i value of 51 nM on the 5-HT₄R, we explored the structure—affinity in this series. We found that

substitution in position 4 of the tricycle with a fluorine atom gave the best result. Introduction of an additional nitrogen atom inside the tricyclic framework led to an increase of both the affinity and selectivity for 5-HT₄R, suggesting the design of the antagonist **4v**, exhibiting a high affinity of 0.04 nM. Several iodinated analogues were then synthesized as potential SPECT tracers. The iodinated compound **11d** was able to displace the reference radioiodinated 5-HT₄R antagonist (1-butylpiperidin-4-yl)methyl-8-amino-7-iodo[¹²³I]-2,3-dihydrobenzo[*b*][1,4]dioxine-5-carboxylate {[¹²³I]**1**, [¹²³I]SB 207710} both in vitro and in vivo in brain. Compound **11d** was radiolabeled with [¹²⁵I]iodine, providing a potential SPECT candidate for brain imaging of 5-HT₄R.

INTRODUCTION

Since its discovery more than 2 decades ago,^{1,2} the serotonin 4 receptor subtype (5-HT₄R) has emerged as a promising target for drug discovery, development, and medical applications.^{3,4} Pharmacological investigations coupled to the discovery of ligands exhibiting high affinity and selectivity for 5-HT₄Rs have led to knowing their anatomical distribution and functional roles. 5-HT₄Rs are found in the peripheral system, where they are implicated in gastrointestinal disorders⁵ and heart failure.⁶ Brain 5-HT₄Rs are mainly expressed in striatum, globus pallidus, nucleus accumbens, and substantia nigra.⁷ Their distribution in the central nervous system and pharmacological studies using selective agonists and/or antagonists has shown that 5-HT₄Rs are implicated in cognition,⁸ learning and memory processes,⁹ and more recently in neuropsychiatric disorders such as Alzheimer's disease,^{10,11} food intake,¹² and depression.¹³ Although efforts have been made by both academics and pharmaceutical companies to develop 5-HT₄R ligands with potential medical applications, only peripheral agonists have yet reached the market for gastrointestinal disorders.¹⁴ Brain 5-HT₄ receptor ligands have entered clinical trials for the treatment of Alzheimer disease but failed in phase IIb.^{15,16} Discovery of active 5-HT₄Rs agonists and antagonists remains of great interest in clinical research. To this end, molecular imaging techniques using positron emission tomography (PET) or single photon emission computed tomography (SPECT) have emerged as valuable tools, both in clinical studies and drug discovery programs.^{17,18} These noninvasive techniques have found broad applications, including diagnosis, imaging of neurotransmitter receptors, in vivo binding studies of new ligands, and establishing treatment strategies. The bottleneck of these techniques remains the limited availability of suitable radioligands.

(1-Butylpiperidin-4-yl)methyl-8-amino-7-iodo^{[123}I]-2,3dihydrobenzo^[b][1,4]dioxine-5-carboxylate {[¹²³I]1, [¹²³I]SB 207710}¹⁹ and (1-methyl[¹¹C]piperidin-4-yl)methyl-8-amino-7-chloro-2,3-dihydrobenzo^[b][1,4]dioxine-5-carboxylate {[¹¹C] 2, [¹¹C]SB 207145}²⁰ have been described as potential radiotracers for respectively PET or SPECT imaging (Chart 1). [¹¹C]2 has been successfully used in minipig for the determination of radioligand metabolism and binding ki-

 Received:
 July 3, 2012

 Published:
 October 26, 2012

ACS Publications © 2012 American Chemical Society

Chart 1. Literature and Prospective 5-HT₄R Radiotracers

netics.²¹ Further studies have shown that this radiotracer can be used for quantitative PET measurements of 5-HT₄R in the human brain.^{22,23} Nevertheless, its short half-life (20.9 min) limits its use in facilities where both a cyclotron and a PET camera are in proximity. Other analogs of 1 have recently been shown to exhibit pharmacological properties that could make them new promising 5-HT₄R PET radiotracers.²⁴ Among them, fluorinated compounds could serve as PET radiotracers of longer half-life. $[^{123}I]\mathbf{1}$ is to date the only SPECT tracer reported for brain imaging of 5-HT₄R, but due to low brain penetration and rapid metabolism, no further investigations with this product have been reported. We report here work aimed at developing new 5-HT₄R radioligands for SPECT imaging. On the basis of previous works in the lab concerning the synthesis and evaluation of 5-HT4R ligands,^{25,26} we synthesized and evaluated new diversely substituted phenanthridine derivatives. As a result, we were able to design several selective and high-affinity 5-HT₄R antagonists among which some iodinated compounds were identified and successfully radiolabeled with ¹²⁵I, representing new potential radioligands for SPECT imaging studies of the 5-HT₄R (Chart 1).

RESULTS

Chemistry. The starting (aza)phenanthridinones 3a-v were prepared according to the general route as previously described.²⁷ Compounds 4a-v were obtained using a two-step procedure involving the formation of an imidoyl chloride intermediate in phosphorus oxychloride at 80 °C and the subsequent nucleophilic aromatic substitution of the chlorine atom with (1-propylpiperidin-4-yl)methanol, using conditions based on previous results.^{25,26} Compounds 4a-v were obtained in 42-91% overall yields, except compound 4n, which was prepared in 9% overall yield in a three-step procedure²⁸ (Table 1).

For the design of potential SPECT ligands, we were interested in the introduction of iodine atoms either on the tricyclic framework or on the lateral chain. Iodinated phenanthridinone **8a** and benzonaphthyridinone **8b** were obtained in good overall yields starting from 2-trimethylsilylfluorobenzene by a four-step procedure involving borylation, Suzuki cross-coupling reaction, iododesilylation, and anionic ring closure (Scheme 1). For the iodinated side chain, we chose to add a terminal iodoaryl group to the propyl chain.^{25,26} Thus, **10** was prepared starting from 4-iododihydrocinnamic acid involving amidation with ethyl isonipecotate and reduction of both the carboxamide and ester function with diisobutylaluminium hydride (Scheme 2).

The iodinated compounds 11a-d were obtained using the two-step chlorodehydroxylation/SNAr sequence starting from phenanthridinones 3a and 8a, benzonaphthyridinones 3v and 8b, and the appropriate piperidine derivative (Table 2).

Table 1. Synthesis of (Aza)Phenanthridines $4a-v^{a}$

9

х⁹

$\begin{array}{c} 1 \\ 2 \\ R \frac{1}{ } \\ 2 \\ R \frac{1}{ } \\ 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	8 7 <u>i, ii</u>	2 R [[3		8 7	
4 H			4		
3a-v			4a-	v	
starting material	R	Х	Y	product	yield (%) ^b
3a	Н	CH	СН	4a	76
3b	2-F	CH	CH	4b	57
3c	2-Cl	CH	CH	4c	70
3d	2-Me	CH	CH	4d	49
3e	2-MeO	CH	CH	4e	91
3f	3-Cl	CH	CH	4f	87
3g	3-MeO	CH	CH	4g	71
3h	3-Me	CH	CH	4h	59
3i	3-F	CH	CH	4i	65
3j	4-Me	CH	CH	4j	47
3k	4-MeO	CH	CH	4k	63
31	4-Cl	CH	CH	41	62
3m	4-F	CH	CH	4m	67
3n	7-F	CH	CH	4n	9 ^c
30	8-NO ₂	CH	CH	4o	57
3p	8-MeO	CH	CH	4p	70
3q	8-F	CH	CH	4q	44
3r	9-Me	CH	CH	4r	71
3s	9-F	CH	CH	4s	62
3t	Н	CH	Ν	4t	42
3u	Н	Ν	CH	4u	54

"Reagents and conditions: (i) POCl₃, 80 °C, overnight; (ii) (1propylpiperidin-4-yl)methanol, NaH, DMF, 0 °C to rt, overnight. "Isolated yields. 'Yield over three steps; see experimental data for details.

CH

4v

83

Ν

Synthesis of Radioligands. Stannylated precursors for radioiodination were prepared from iodinated compounds **11a,b,d** using palladium-catalyzed tin–iodine exchange in the presence of PPh₃ in toluene.²⁹ Radioiodination from the stannylated compounds **12a,b,d** was performed using Na¹²⁵I as the source of radioactive iodine H₂O₂ (30%) as the oxidant in acidic medium (Scheme 3). After HPLC purification, the radioiodinated compounds **13a,b,d** were obtained in 56–85% radiochemical yields. The products **13a,b,d** were found to be all carrier-free, exhibiting apparent specific radioactivities of respectively 240, 110, and 280 Ci/mmol (11%, 5% and 13% of the carrier free specific activity).

5-HT₄R Binding Affinity and Functional Assays. Twenty-six compounds (4a-v, 11a-d) were initially screened for their affinity toward 5-HT₄R in guinea pig striatal

3v

4-F

Scheme 1. Synthesis of 4-Iodo(aza)phenanthridin-6(5H)-ones 8a,b^a

^aReagents and conditions: (i) *s*-BuLi 0.75 h, B(OMe)₃ 0.75 h, THF, -78 °C to rt; (ii) 2-BrPhCN or 2-Cl-3-CN-pyridine, Na₂CO₃, Pd(OAc)₂, PPh₃, DME/H₂O, 14 h, 90 °C; (iii) ICl, DCM, 4.5 h, rt; (iv) KOH, *t*-BuOH, sealed tube, 1 h, 150 °C.

membranes at 10^{-6} and 10^{-8} M. Twenty compounds were selected for K_i determination in 5-HT₄R guinea pig striatal membranes. These ligands show K_i values between 2.2 and 691 nM. Among them, 10 were chosen for human 5-HT₄R K_i determination and, except 4t, all ligands showed better affinity for human 5-HT₄R compared to guinea pig 5-HT₄R, exhibiting K_i values between 0.04 and 33 nM (Table 3). All compounds were evaluated for their intrinsic activity and showed either an inverse agonist (4k-m,u) or a full antagonist profile (4v, 11a,b, and 11d), as shown in Table 4.

5-HTRs Binding Profile. Compounds 4k, 4l, 4m, 4u, 4v, 11a, 11b, and 11d with the highest affinities for 5-HT₄R were screened toward other 5-HTR subtypes. Results are shown in Table 5.

DISCUSSION

Unlike PET imaging using ¹⁸F, for which both a suitable fluorinated ligand and a precursor for radiofluorination have to be designed, for SPECT imaging an iodinated ligand can serve as both the nonradioactive ligand for pharmacological studies and the precursor for the introduction of ¹²³I via successive stannylation—iododestannylation reactions. A major challenge with SPECT imaging is to find a suitable iodinated ligand exhibiting high affinity and receptor selectivity. Whereas a hydrogen atom often can be replaced by a fluorine atom without significant decrease in biological activities, introduction of an iodine atom can lead to a dramatic decrease in affinity due to its large atomic radius.

Starting from the unsubstituted phenanthridine 4a, which exhibited good 5-HT₄R binding affinity ($K_i = 51 \text{ nM}$), we explored the influence of substitution of the tricyclic ring system in this series to find the best positions for the

Article

^aReagents and conditions: (i) POCl₃, 80 °C, overnight; (ii) 1propylpiperidin-4-ylmethanol or **10**, NaH, DMF, 0 °C to rt, overnight. ^bIsolated yields.

^aReagents and conditions: (i) $(Bu_3Sn)_2$, Pd(OAc)₂, PPh₃, PhMe/H₂O, 16 h, 90 °C. (ii) Na¹²⁵I, 30% H₂O₂, EtOH/AcOH, rt, 20 min.

introduction of substituents, including an iodine atom. The chemical routes we have developed allowed the introduction of substituents in position 2, 3, 4, 7, 8, and 9 (Table 3). The results show that substitution of the phenanthridine in position 2, 3, 8, or 9 was detrimental for affinity compared to unsubstituted compound 4a; all compounds show K_i values above 100 nM, even with the small fluorine group. Better results were obtained when substituents were placed in positions 4 and 7. The 7-fluoro compound 4n showed a slight increase in affinity ($K_i = 22$ nM), whereas substituents in position 4 led to significant improvements in affinity (compounds 4k-m), except the 4-methyl-substituted compound 4j. Interestingly, while compounds 4k-m exhibited 35,

Scheme 2. Synthesis of $\{1-[3-(4-Iodophenyl)propyl]piperidin-4-yl\}$ methanol 10^a

"Reagents and conditions: (i) Ethyl isonipecotate, HOBt, EDCI, NEt₃, 24 h, rt; (ii) DIBALH, THF, 3 h, -10 °C to rt.

						$5-\mathrm{HT}_4 K_\mathrm{i}$	(nM)
compd	R	Х	Y	Z	% inhbn $(10^{-6} \text{ M}/10^{-8} \text{ M})^a$	guinea pig ^b	human ^c
4a	Н	СН	СН	Н	100/11	51.5	NM^d
4b	2-F	СН	СН	Н	47/0	NM	NM
4c	2-Cl	СН	СН	Н	27/0	NM	NM
4d	2-Me	СН	СН	Н	88/7	246	NM
4e	2-MeO	СН	СН	Н	83/9	233	NM
4f	3-Cl	СН	СН	Н	85/0	NM	NM
4g	3-MeO	СН	СН	Н	NM	1900	NM
4h	3-Me	СН	СН	Н	65/30	691	NM
4i	3-F	СН	СН	Н	100/14	101	33.0 ^e
4j	4-Me	CH	СН	Н	100/0	100	NM
4k	4-MeO	СН	СН	Н	100/22	35.0	17.0 ^e
41	4-Cl	СН	СН	Н	100/24	21.9	5.0 ^e
4m	4-F	СН	СН	Н	100/63	20.1	3.1 ^e
4n	7-F	СН	СН	Н	100/0	21.6	NM
4o	8-NO ₂	CH	СН	Н	54/0	NM	NM
4p	8-MeO	CH	CH	Н	85/0	NM	NM
4q	8-F	CH	CH	Н	90/4	154	NM
4r	9-Me	CH	СН	Н	28/0	NM	NM
4s	9-F	CH	СН	Н	84/0	209	NM
4t	Н	CH	Ν	Н	100/50	22.8	403 ^e
4u	Н	Ν	CH	Н	96/64	13.1	7.5^{e}
4v	4-F	Ν	CH	Н	100/98	2.2	0.04 ^f
11a	4-I	CH	СН	Н	100/0	13.5	1.20 ^f
11b	4-I	Ν	CH	Н	100/20	4.6	0.26 ^f
11c	Н	СН	CH	4-iodophenyl	100/3	115	NM
11d	4-F	Ν	СН	4-iodophenyl	100/94	2.5	0.23^{f}

^{*a*}Inhibition percentages were determined by using guinea pig striatal membrane 5-HT₄R. ^{*b*}Guinea pig striatal membrane 5-HT₄R (n = 3). ^{*c*}Human 5-HT₄R (n = 3). ^{*d*}NM = not measured. ^{*e*}K_i determinations were performed at NIMH PDSP. ^{*f*}K_i determinations were performed at CEREP. See Experimental Section for details.

Table 4. Intrinsic Activi	ty and cLogD of 5-HT ₄	R Ligands 4k, 4l, 4m,	4u, 4v, 11a, 11b, and 11d
---------------------------	-----------------------------------	-----------------------	---------------------------

	4k	41	4m	4u	4v	11a	11b	11d
human 5-HT ₄ K _i (nM)	17	5.0	3.1	7.5	0.04	1.20	0.26	0.23
efficacy	inv ag ^a	inv ag ^a	inv ag ^a	inv ag ^a	antag ^b	antag ^b	antag ^b	$antag^b$
EC_{50} (nM)	79.4	251	63.1	10	-	-	-	-
$K_{\rm B}$ (nM)	-	-	-	-	0.025	5.0	0.5	6.3
$cLogD^{c}$	2.48	3.25	2.79	1.84	1.98	3.58	2.77	4.67
^a Functional assays perform	ed at NIMH	PDSP. inv. ag	– inverse agoni	st ^b Functions	l assaws perfor	rmed at CERI	\mathbf{P} ant $\alpha = \alpha$	ntagonist Se

"Functional assays performed at NIMH PDSP; inv ag = inverse agonist. "Functional assays performed at CEREP; antag = antagonist. See Experimental Section for details. "Calculated log D (pH = 7.4) using MarvinSketch 5.2.6.

22, and 20 nM K_i values respectively for guinea pig 5-HT₄R, against human 5-HT₄R they showed significantly higher binding affinities with K_i values of respectively 17, 5, and 3 nM. Introduction of a nitrogen atom in position 9 or 10 led to benzonaphthyridines **4t** and **4u**, which exhibited increased activity compared to **4a** with $K_i = 23$ and 13 nM, respectively. When fluorine was introduced in position 4 to give benzonaphthyridine **4v**, the affinity was significantly increased to 2.2 nM on guinea pig 5-HT₄R, and remarkably, this compound exhibited a very high affinity on human 5-HT₄R with a K_i value of 0.04 nM ($pK_i = 10.4$, $pK_B = 10.6$). This compound represents one of the most active 5-HT₄R

antagonist reported to date, being in the same range as the reference antagonists [1-(2-methanesulfonamidoethyl)-piperidin-4-yl]methyl 1-methylindole-3-carboxylate (GR 113808)³⁰ or 1.³¹

With these structure–affinity results in hand, we investigated the design of iodinated compounds for potential development of SPECT radiotracers. As the position 4 seemed to give the best results in both the phenanthridine and benzonaphthyridine series, we chose to introduce an iodine atom in this position. Iodinated compounds **11a** and **11b** were synthesized and evaluated for their 5-HT₄R binding affinity. Despite differences between fluorine and iodine in terms of size and electronic

Table 5. Binding	g Affinities of (Compounds 4k,	4l, 4m, 4u	u, 4v, 11a,	11b, and	11d toward 5-HT	' Receptors ^a

d
3
0
04
0^{4}
М
0
0
0
0
00
0^{4}
Э
)(0 0

^aSelectivity was performed at NIMH PDSP, except for compound 11d, for which the selectivity was performed at CEREP.

Figure 1. Docking poses of compounds 4m (A), 4v (B and C), and 11d (D).

properties, **11a** and **11b** exhibited K_i values of 13 and 4.6 nM for guinea pig 5-HT₄R and respectively, 1.2 and 0.26 nM for human 5-HT₄R, in the same range as their fluorinated analogues **4m** and **4v**. Further, we investigated compounds iodinated on the *N*-propyl group. In order to avoid the expected elimination of the iodine atom if bonded to a saturated carbon, it was not directly attached to the *N*-propyl chain but to an aromatic group using the *N*-3-(4-iodophenyl)-propyl chain. Previous results have shown that some 5-HT₄R ligands bearing bulky aromatic group bonded to the lateral chain can exhibit high affinities.³ Accordingly, compounds **11c** and **11d** were synthesized. Despite the introduction of the bulky iodoaryl group, the iodinated 4-fluorobenzonaphthyr-

idine 11d was found to exhibit high affinity for both guinea pig 5-HT₄R ($K_i = 2.5 \text{ nM}$) and human 5-HT₄R ($K_i = 0.23 \text{ nM}$) on the similar order of magnitude as compound 4v. Along with high binding affinities, intrinsic activity and binding selectivity are other key parameters for the development of suitable ligands for imaging. The best 5-HT₄R ligands 4k-m, 4u-v, 11a,b, and 11d were evaluated for both intrinsic activity and selectivity toward other 5-HTRs (Tables 4 and 5). Compounds 4k-m and 4u appeared to be inverse agonists with pEC₅₀ ranging from 6.6 to 8.0, whereas compounds 4v, 11a,b, and 11d were found to be full antagonists with pK_B values ranging from 8.2 to 10.6, in accordance with their K_i values. The difference observed in intrinsic activity could be due to high constitutive

Journal of Medicinal Chemistry

activity of the cloned receptors used in the functional tests. Some ligands have been found to behave either as antagonists or as inverse agonists, depending on the functional models used.³² These compounds were then evaluated for their selectivity toward other 5-HT receptors. All compounds showed high selectivity toward other 5-HT receptors except 5-HT_{2B}R, for which compounds 4k-m exhibited almost the same potency as for 5-HT₄R. Interestingly, the additional nitrogen atom in position 10 not only led to increased affinities for 5-HT₄R but also contributes to decreased affinity for 5- $HT_{2B}R$, resulting in compounds with higher selectivity (>100). In order to try to rationalize this result we performed docking studies using a model of 5-HT₄R based on the crystal structures of compounds 4m, 4v, and 11d assuming that the crystalline conformations are the most energetically stable (see Supporting Information). The homology model of the human $5-HT_4$ receptor was constructed using the β_2 -adrenergic receptor crystal structure, one of the available GPCR structures that exhibits a sequence identity of about 40% with the 5-HT $_4R$.³³ The two crystallographic conformers of compound 4m were docked into the 5-HT₄R model (see Supporting Information). In the selected pose (Figure 1A, mean ChemScore fit = 31.18), the basic piperidine nitrogen interacted with Asp₁₀₀ (consistent with the constraint used during the docking), and an additional polar interaction could form through this basic nitrogen and the Tyr₃₀₂ hydroxyl group.³⁴ The tricyclic framework was oriented toward the transmembrane helix 5 (TM5, colored in yellow in Figure 1), in a position analogous to that observed for β adrenergic receptor ligands in solved X-ray structures.^{33,35} In the 4m docking position, the tricycle is oriented parallel to the TM5 helix axis and is surrounded by several aromatic residues (Phe₁₈₆, Tyr₁₉₂, Phe₂₇₅, Phe₂₇₆), oriented approximately perpendicularly to the tricyclic framework, indicating possible π stacking interactions. The fluorine atom pointed inside the receptor. The addition of a supplementary nitrogen atom in derivative 4v could lead to a new hydrogen bond with the Ser₁₉₇ hydroxyl group as seen in Figure 1B (mean ChemScore fit = 33.10). While this additional interaction could explain the increased affinity for the 5-HT₄R of 4v versus 4m, it does not explain its lower affinity for the 5-HT_{2B}R. Indeed, a careful comparison of these receptors sequences showed that Ser₁₉₇ is present in both the 5-HT₄ and 5-HT_{2B} receptors; therefore, it is not probable that the additional nitrogen interacts with this serine. Comparison of amino acid sequences in the TM5 part of the binding cavity shows three differences: $Tyr_{192}(5-HT_4R)/$ Phe₂₁₇(5-HT_{2B}R), Cys₁₉₆(5-HT₄R)/Gly₂₂₁(5-HT_{2B}R), and $Ala_{193}(5-HT_4R)/Met_{218}(5-HT_{2B}R)$. We reasoned that the supplementary nitrogen atom in 4v could interact with the hydroxyl group of the 5-HT₄R Tyr₁₉₂. Therefore, the docking studies of 4v were carried out by taking into account a supplementary hydrogen-bonding constraint between this additional nitrogen atom and the Tyr₁₉₂ hydroxyl group. In the best scoring docking pose of this study (mean ChemScore fit = 41.55), the tricycle was oriented perpendicularly to the TM5 helix axis (Figure 1C), the N-1 nitrogen atom formed the H-bond with Tyr₁₉₂ as set during the docking and was located far from the Ser₁₉₇. Furthermore, in this docking pose, the fluorine, the N-6 nitrogen atom, and the oxygen atom were placed near to the 5-HT₄R Trp₂₉₄ (TM7), so that electrostatic interactions can occur with this amino acid. Binding interactions with this Trp₂₉₄ have been previously shown to be essential for some 5-HT₄R ligands.³⁶ The docking of compound 11d showed that it can be positioned in the same

manner as 4v (mean ChemScore fit = 33.54), the 4-iodophenyl group going up toward the extracellular entrance (Figure 1D), as it was observed for some cocrystallized extended ligands such as the full agonist carmoterol in β_1 -adrenergic receptor³⁷ or for the antagonist JDTic in κ -opioid receptor.³⁸

Among the iodinated compounds, **11a**, **11b**, and **11d** could be considered as promising candidates for the development of a SPECT tracer owing to their subnanomolar binding affinities, high selectivity over other 5-HTRs including 5-HT_{2B}R, and computed lipophilicities within a range adequate for brain penetration.³⁹ Compound **11d**, which exhibits the highest K_i value and selectivity, was chosen for further evaluation. In order to address its 5-HT₄R specific binding capacity, in vitro competition experiments with the selective and specific antagonist radioligand [¹²⁵I]**1** were performed. Increasing concentrations of **11d** coadministered with [¹²⁵I]**1** show a decrease in the 5-HT₄R-specific radioactivity at 10 pM of **11d**, while increasing the concentration to 1 nM led to the almost complete abolishment of the signal (Figure 2). The same

Figure 2. Autoradiograms obtained by incubation of sections with 100 pM of $[^{125}I]I$ in the presence of growing concentrations of **11d** (1, 10, 100, and 1000 pM from left to right).

experiment was performed ex vivo. The specific binding of $[^{125}I]\mathbf{1}$ is slightly noticeable in the olfactory tubercles but is markedly reduced compared to a reference experiment (Figure 3). The activity between the hemispheres in the coinjection

Figure 3. Ex vivo autoradiogram after intravenous injection of $[^{125}I]\mathbf{1}$ alone (left) and after coinjection with 50 μ g/kg of **11d** to a mouse (right).

experiment is due to the presence of blood in the brain sections. Taken together, these two experiments show that (1) **11d** is able to compete with the specific radioligand $[^{125}I]1$ both in vitro and in vivo at very low concentration and (2) **11d** is able to cross the blood-brain barrier, making **11d** a suitable candidate for use in SPECT imaging studies.

The radioiodinated compound 13d was successfully prepared from 11d by a two-step sequence involving stannylation and $Sn^{-125}I$ exchange (Scheme 3). 13d was obtained in a 85% radiochemical yield, and the specific radioactivity was measured at 280 Ci/mmol (13% of the carrier free specific activity). The two other iodinated compounds 11a and 11b were radioiodinated following the same strategy affording 13a and 13b in respectively 56 and 70% RCY and with a specific activity of respectively 240 and 110 Ci/mmol (11 and 5% of the carrier free specific activity).

CONCLUSION

Our studies aimed at the development of new potential radiotracers for SPECT imaging of brain 5-HT₄ receptors. Starting from a phenanthridine scaffold we designed new antagonists exhibiting high affinity and selectivity toward this receptor. The fluorinated compound 4v has shown the best profile with a low subnanomolar K_i value and a high selectivity toward other 5-HT receptor subtypes. Compared to the phenanthridine analog 4m, the additional nitrogen atom in compound 4v led to a significant improvement of both affinity and selectivity for the 5-HT₄R. Having established the structure-affinity relationships for this series, we have successfully introduced iodine atoms without negatively affecting either affinities or selectivities. Among these iodinated compounds, 11d was chosen for further evaluation as a potential radiotracer. This compound was able to displace a specific 5-HT₄R ligand both in vitro and in vivo at subnanomolar concentrations, thereby demonstrating receptor specificity and capacity to cross the blood-brain barrier. Three iodinated compounds were successfully radiolabeled with [125I] and owing to their favorable pharmacological properties represent novel candidates for further evaluation as SPECT radiotracers.

EXPERIMENTAL SECTION

All chemical reagents and solvents were purchased from commercial sources and used without further purification except THF, which was distilled from Na/benzophenone. Thin-layer chromatography (TLC) was performed on silica gel plates. Silica gel 0.06-0.2 mm, 60 Å was used for all column chromatography. Melting points were determined on a Kofler melting point apparatus. IR spectra were recorded as neat films on a Nicolet 380 FT-IR or on KBr disks using a PerkinElmer BX-FT-IR. ¹H and ¹³C NMR spectra were recorded on a JEOL Lambda 400 spectrometer with chemical shifts expressed in parts per million (in DMSO- d_6 or CDCl₃). High-resolution mass spectra (EI) were performed on a JEOL GC-Mate spectrometer. High-resolution mass spectra (ESI) were performed on a Bruker APEX III FT-ICR-MS system. Elemental analyses were performed at the "Institut de Recherche en Chimie Organique Fine" (Rouen, France). The purities of all tested compounds were analyzed by LC-MS, with the purity all being higher than 95%. Analyses were performed using a Waters alliance 2695 using the following gradient: A (95%)/B (5%) to A (5%)/B (95%) in 10 min. This ratio was held for 3 min before returning to initial conditions in 1 min. Initial conditions were then maintained for 5 min (A, H₂O; B, MeCN; each containing 0.1% HCOOH; column, C18 Xterra MSC118/2.1_50 mm). MS detection was performed with a Micromass ZMD 2000. Suitable crystals of solved structures were obtained by slow evaporation from MeCN solution. Data for crystal structures analysis were collected at 296 K with a Bruker-Nonius Kappa CCD area detector diffractometer with graphite–monochromatized Mo K $_{\lambda}$ radiation (λ = 0.71073 Å). The structures were solved using direct methods and refined by full-matrix least-squares analysis on F^2 . SHELXS-97 (Sheldrick) was used to solve structures, to refine structures, and to prepare material for publication. Crystallographic data for compounds 4c, 4d, 4g, 4h, 4j, 4m, 4p, 4q, 4r, 4v, and 11d have been deposited at the Cambridge Crystallographic Data Centre, CCDC No 889427, 889429-889437, and 889548. Copies of this information may be obtained free of charge from the Director, CCDC, 12 Union Road, Cambridge, CB2 1EZ, UK (+44-1223-336408; E-mail, deposit@ccdc.cam.ac.uk; Web site, http://www.ccdc.cam.ac.uk).

7-Fluorobenzo[*h*]**-1,6-naphthyridin-5(6H)-one (3v).** In a sealed tube were introduced KOH (1.94 g, 34.6 mmol), 2-(2,3-

difluorophenyl)nicotinonitrile⁴⁰ (1.5 g, 6.9 mmol), and *t*-BuOH (40 mL). The tube was heated to 150 °C for 0.5 h. Water (30 mL) was added and the obtained precipitate was filtered. The solid was then dried under vacuum to afford **3v** (1.3 g) as a white powder. Yield: 87%. Mp: >260 °C. IR (KBr): ν (cm⁻¹) 3022, 1675 (CO), 1587, 1419, 763. ¹H NMR (400 MHz, DMSO- d_6): δ 7.28 (m, 1H), 7.49 (m, 1H), 7.70 (dd, 1H, ³*J* = 7.8 Hz, ³*J* = 3.9 Hz), 8.43 (d, 1H, ³*J* = 7.8 Hz), 8.68 (dd, 1H, ³*J* = 7.8 Hz, 4*J* = 1.9 Hz), 9.07 (d, 1H, ³*J* = 3.9 Hz), 11.87 (brs, 1H). ¹³C NMR (100 MHz, DMSO- d_6): δ 116.5 (d, ²*J* = 17 Hz), 119.7 (d, *J* = 3 Hz), 121.0 (d, *J* = 2 Hz), 121.6, 122.2 (d, *J* = 7 Hz), 123.9, 126.5 (d, ²*J* = 14 Hz), 135.9, 149.4 (d, ¹*J* = 243 Hz), 149.9 (d, *J* = 3 Hz), 154.3, 160.7. HRMS/EI: calcd for C₁₂H₇FN₂O 214.0542, found 214.0548.

General Procedure A for the Synthesis of Compounds 4a–v and 11a–d. The chosen (aza)phenanthridin-6(5H)-one (3a–v, 8a– b) and POCl₃ (5 mL mmol⁻¹) were heated to 90 °C overnight in a round-bottom flask. After cooling, the mixture was poured carefully on cold water and crushed ice. The pH was carefully adjusted to 12 using a 28% ammonia solution. The product was extracted using EtOAc (three times). The organic phase was dried with MgSO₄, filtered, and evaporated. The crude material was added at 0 °C to a solution of either (1-propylpiperidin-4-yl)methanol or {1-[3-(4-iodophenyl)propyl]piperidin-4-yl}methanol 10 (1 equiv) and NaH (4 equiv) in anhydrous DMF (10 mL mmol⁻¹). The solution was allowed to reach room temperature, stirred overnight, hydrolyzed with water, and extracted with AcOEt (3 times). The combined organic phases were washed with water (three times), dried over MgSO₄, filtered, evaporated, and purified by silica gel chromatography.

6-(1-Propylpiperidin-4-yl)methyloxyphenanthridine (4a). Starting from 3a (213 mg, 1.1 mmol) using general procedure A and cyclohexane/ethyl acetate 8/2 with 5% of NEt₃ as the eluent for the chromatography, 4a was obtained as a white powder (277 mg). Yield: 76%. Mp: 74–76 °C. IR (KBr): ν (cm⁻¹) 2924, 1590, 1461, 1343, 1319. ¹H NMR (400 MHz, CDCl₃): δ 0.91 (t, 3H, ³J = 7.6 Hz), 1.50-1.62 (m, 4H), 1.91-2.03 (m, 5H), 2.30-2.34 (m, 2H), 3.00-3.03 (m,2H), 4.50 (d, 2H, ${}^{3}J$ = 6.0 Hz), 7.47 (ddd, 1H, ${}^{3}J$ = 8.0 Hz, ${}^{3}J$ = 6.8 Hz, ${}^{4}J$ = 1.2 Hz), 7.59–7.64 (m, 2H), 7.80 (ddd, 1H, ${}^{3}J$ = 8.4 Hz, ${}^{3}J$ = 7.2 Hz, ${}^{4}J$ = 1.6 Hz), 7.86 (dd, 1H, ${}^{3}J$ = 8.4 Hz, ${}^{4}J$ = 1.6 Hz), 8.38 $(dd, 1H, {}^{3}J = 8.0 Hz, {}^{4}J = 1.2 Hz), 8.40-8.42 (m, 1H), 8.48-8.51 (m, 1H)$ 1H). ¹³C NMR (100 MHz, CDCl₃): δ 12.3, 20.4, 29.5 (2C), 36.1, 53.8 (2C), 61.4, 70.6, 120.4, 122.0, 122.2, 122.6, 124.4, 125.2, 127.3, 127.9, 128.9, 130.9, 134.9, 143.5, 159.1. LC-MS (ESI): $t_{\rm R}$ = 5.02 min; [M + $H\,]^+$ 335.58. HRMS/EI: calcd for $C_{22}H_{26}N_2O$ 334.2046, found 334.2046.

2 - Fluoro - 6 - (1 - propylpiperidin - 4 - yl) methyloxyphenanthridine (4b). Starting from 3b (180 mg, 0.84 mmol), using general procedure A and cyclohexane/ethyl acetate 7/3 with 5% of NEt₃ as the eluent for the chromatography, 4b was obtained as a white powder (169 mg). Yield: 57%. Mp: 115-116 °C. IR (KBr): ν (cm⁻¹) 3076, 2927, 2764, 1618, 1591, 1495, 1453, 1436, 1348, 1315, 1243. ¹H NMR (400 MHz, CDCl₃): δ 0.91 (t, 3H), 1.53– 1.59 (m, 4H), 1.90-2.02 (m, 5H), 2.29-2.33 (m, 2H), 2.99-3.02 (m, 2H), 4.45 (d, 2H, ${}^{3}J$ = 6.1 Hz), 7.33 (ddd, 1H, ${}^{3}J$ = 8.8 Hz, ${}^{3}J$ = 8.0 Hz, ${}^{4}J = 2.8$ Hz), 7.64 (ddd, 1H, ${}^{3}J = 8.0$ Hz, ${}^{3}J = 6.8$ Hz, ${}^{4}J = 1.2$ Hz), 7.77 (ddd, 1H, ${}^{3}J$ = 8.0 Hz, ${}^{3}J$ = 7.2 Hz, ${}^{4}J$ = 1.6 Hz), 7.81 (dd, 1H, ${}^{3}J$ = 8.8 Hz, ${}^{3}J = 5.2$ Hz), 7.98 (dd, 1H, ${}^{3}J = 10.0$ Hz, ${}^{4}J = 2.8$ Hz), 8.33 (d, 1H, ${}^{3}J$ = 8.4 Hz), 8.36 (dd, 1H, ${}^{3}J$ = 8.0 Hz, ${}^{4}J$ = 1.2 Hz). ${}^{13}C$ NMR (100 MHz, CDCl₃): δ 12.1, 20.2, 29.3 (2C), 35.9, 53.6 (2C), 61.2, 70.5, 107.1 (d, ${}^{2}J$ = 23 Hz), 116.9 (d, ${}^{2}J$ = 24 Hz), 120.2, 121.9, 123.3 (d, J = 9 Hz), 125.1, 127.7, 129.4 (d, J = 5 Hz), 130.8, 134.0 (d, J = 4 Hz), 139.8, 158.3 (d, J = 2 Hz), 159.7 (d, ${}^{1}J = 241$ Hz). LC-MS (ESI): $t_{\rm R} =$ 5.23 min; [M + H]⁺ 353.34. HRMS/EI: calcd for C₂₂H₂₅FN₂O 352.1950, found 352.1938.

2 - **C** h l o r o - 6 - (1 - p r o p y l p i p e r i d i n - 4 - y l) methyloxyphenanthridine (4c). Starting from 3c (670 mg, 2.9 mmol), using general procedure A and cyclohexane/ethyl acetate 8/2 with 5% of NEt₃ as the eluent for the chromatography, 4c was obtained as a white powder (753 mg). Yield: 70%. Mp: 110–111 °C. IR (KBr): ν (cm⁻¹) 2930, 1589, 1345, 1317, 1096, 820. ¹H NMR (400 MHz, CDCl₃): δ 0.92 (t, 3H, ³J = 6.8 Hz), 1.50–1.61 (m, 4H), 1.91– 2.02 (m, 5H), 2.30–2.34 (m, 2H), 3.00–3.03 (m, 2H), 4.47 (d, 2H, ${}^{3}J$ = 5.9 Hz), 7.54 (dd, 1H, ${}^{3}J$ = 8.8 Hz, ${}^{4}J$ = 1.9 Hz), 7.65 (t, 1H, ${}^{3}J$ = 6.8 Hz), 7.76–7.81 (m, 2H), 8.33 (d, 1H, ${}^{4}J$ = 2.0 Hz), 8.35–8.39 (m, 2H). ${}^{13}C$ NMR (100 MHz, CDCl₃): δ 12.1, 20.2, 29.3 (2C), 35.9, 53.6 (2C), 61.2, 70.6, 120.3, 121.8, 121.9, 123.5, 125.1, 127.8, 129.0, 129.1, 129.8, 131.0, 133.7, 141.8, 159.1. LC–MS (ESI): $t_{\rm R}$ = 5.58 min; [M + H]⁺ 369.26, 371.26. HRMS/EI: calcd for C₂₂H₂₅ClN₂O 368.1655, found 368.1659.

2 - Methyl - 6 - (1 - propylpiperidin - 4 - yl) methyloxyphenanthridine (4d). Starting from 3d (400 mg, 1.9 mmol), using general procedure A and cyclohexane/ethyl acetate 8/2 with 5% of NEt₃ as the eluent for the chromatography, 4d was obtained as a white powder (326 mg). Yield: 49%. Mp: 87-89 °C. IR (KBr): ν (cm⁻¹) 2951, 2928, 2798, 2761, 1589, 1344, 1317, 1302, 1148, 1088, 820, 772. ¹H NMR (400 MHz, CDCl₃): δ 0.91 (t, 3H, ³J = 7.8 Hz), 1.52–1.60 (m, 4H), 1.92–2.02 (m, 5H), 2.30–2.34 (m, 2H), 2.56 (s, 3H), 3.00-3.03 (m, 2H), 4.48 (d, 2H, $^{3}J = 5.9$ Hz), 7.43 (d, 1H, ${}^{3}J = 7.8$ Hz), 7.61 (t, 1H, ${}^{3}J = 6.8$ Hz), 7.75–7.80 (m, 2H), 8.20 (s, 1H), 8.36 (d, 1H, ${}^{3}J$ = 7.8 Hz), 8.48 (d, 1H, ${}^{3}J$ = 7.8 Hz). ${}^{13}C$ NMR (100 MHz, CDCl₃): δ 12.1, 20.2, 21.7, 29.3 (2C), 36.0, 53.7 (2C), 61.3, 70.4, 120.2, 121.8, 121.9, 122.2, 125.0, 127.0, 127.5, 130.3, 130.6, 133.8, 134.6, 141.4, 158.4. LC-MS (ESI): $t_{\rm R} = 5.53$ min; $[M + H]^{-1}$ 349.35. Anal. Calcd for C22H26N2O: C, 79.01; H, 7.84; N, 8.38. Found: C, 79.27; H, 7.91; N, 8.01.

2 - M e t h o x y - 6 - (**1** - p r o p y l p i p e r i d i n - 4 - y l) methyloxyphenanthridine (4e). Starting from 3e (300 mg, 1.33 mmol), using general procedure A and cyclohexane/ethyl acetate 9/1 with 5% of NEt₃ as the eluent for the chromatography, 4e was obtained as a colorless oil (440 mg). Yield: 91%. IR (KBr): ν (cm⁻¹) 2935, 1620, 1591, 1498, 1345, 1316, 1243. ¹H NMR (400 MHz, DMSO-d₆): δ 0.84 (t, 3H, ³J = 7.8 Hz), 1.38–1.45 (m, 4H), 1.81–1.91 (m, 5H), 2.19–2.22 (m, 2H), 2.86–2.89 (m, 2H), 3.94 (s, 3H), 4.36 (d, 2H, ³J = 5.9 Hz), 7.27 (dd, 1H, ³J = 8.8 Hz, ⁴J = 2.9 Hz), 7.70–7.76 (m, 2H), 7.90 (t, 1H, ³J = 6.8 Hz), 8.04 (d, 1H, ⁴J = 2.9 Hz), 8.28 (d, 1H, ³J = 7.8 Hz), 8.76 (d, 1H, ³J = 8.8 Hz). ¹³C NMR (100 MHz, DMSO-d₆): δ 11.9, 19.7, 28.8 (2C), 35.5, 53.1 (2C), 55.6, 60.3, 70.0, 104.3, 118.3, 119.2, 122.8, 122.9, 124.3, 127.9, 128.6, 131.1, 133.9, 137.1, 156.5, 156.7. LC-MS (ESI): $t_{\rm R}$ = 5.31 min; [M + H]⁺ 365.322, found 365.2211.

3 - **C** h l o r o - 6 - (1 - p r o p y l p i p e r i d i n - 4 - y l) methyloxyphenanthridine (4f). Starting from 3f (124 mg, 0.54 mmol), using general procedure A and cyclohexane/ethyl acetate 95/5 with 5% of NEt₃ as the eluent for the chromatography, 4f was obtained as a white powder (173 mg). Yield: 87%. Mp: 84–86 °C. IR (KBr): ν (cm⁻¹) 3400, 2939, 1590, 1482, 1352, 1317, 1081, 765. ¹H NMR (400 MHz, DMSO-*d*₆): δ 0.90 (t, 3H, ³J = 6.4 Hz), 1.70–1.80 (m, 4H), 2.02–2.04 (m, 5H), 2.31–2.34 (m, 2H), 2.93–3.00 (m, 2H), 4.48 (s, 2H), 7.57 (d, 1H, ³J = 8.8 Hz), 7.76–7.81 (m, 2H), 7.96 (t, 1H, ³J = 6.8 Hz), 8.37 (d, 1H, ³J = 6.8 Hz), 8.67 (d, 1H, ³J = 8.8 Hz), 8.75 (d, 1H, ³J = 7.8 Hz). ¹³C NMR (100 MHz, CDCl₃): δ 12.0, 20.5, 28.9 (2C), 36.2, 53.1 (2C), 61.2, 70.6, 119.7, 121.8, 122.2, 122.9, 125.1, 127.8, 128.7, 129.1, 129.8, 131.0, 133.7, 141.8, 159.1. LC–MS (ESI): $t_{\rm R} = 5.79$ min; [M + H]⁺ 369.32, 371.33. HRMS/EI: calcd for C₂₂H₂₅ClN₂O 368.1655, found 368.1666.

3 - **M** e t h o x y - 6 - (1 - p r o p y | p i p e r i d i n - 4 - y |) methyloxyphenanthridine (4g). Starting from 3g (291 mg, 1.3 mmol), using general procedure A and cyclohexane/ethyl acetate 9/1 with 5% of NEt₃ as the eluent for the chromatography, 4g was obtained as a white powder (334 mg). Yield: 71%. Mp: 76–77 °C. IR (KBr): ν (cm⁻¹) 2932, 1615, 1587, 1484, 1350, 1315, 1174, 1087, 983, 770. ¹H NMR (400 MHz, CDCl₃): δ 0.91 (t, 3H, ³J = 7.8 Hz), 1.50– 1.62 (m, 4H), 1.92–2.03 (m, 5H), 2.30–2.34 (m, 2H), 3.01–3.03 (m, 2H), 3.96 (s, 3H), 4.48 (d, 2H, ³J = 6.8 Hz), 7.09 (dd, 1H, ³J = 8.8 Hz, ⁴J = 2.0 Hz), 7.30 (d, 1H, ⁴J = 2.0 Hz), 7.55 (t, 1H, ³J = 6.8 Hz), 7.75 (t, 1H, ³J = 8.8 Hz), 8.28 (d, 1H, ³J = 8.8 Hz), 8.34 (d, 1H, ³J = 7.8 Hz), 8.37 (d, 1H, ³J = 7.8 Hz). ¹³C NMR (100 MHz, CDCl₃): δ 12.1, 20.2, 29.3 (2C), 36.0, 53.7 (2C), 55.5, 61.3, 70.5, 108.5, 114.6, 116.2, 119.1, 121.3, 123.3, 125.1, 126.0, 130.9, 134.9, 145.0, 159.5, 160.3. LC–MS (ESI): t_R = 5.25 min; [M + H]⁺ 365.38. HRMS/EI: calcd for C₂₃H₂₈N₂O₂ 364.2150, found 364.2140.

3 - Methyl - 6 - (1 - propylpiperidin - 4 - yl) methyloxyphenanthridine (4h). Starting from 3h (120 mg, 0.57 mmol), using general procedure A and cyclohexane/ethyl acetate 8/2 with 5% of NEt₃ as the eluent for the chromatography, 4h was obtained as a white powder (118 mg). Yield: 59%. Mp: 107-108 °C. IR (KBr): ν (cm⁻¹) 3430, 2939, 1590, 1344, 1314, 1090, 774. ¹H NMR (400 MHz, CDCl₃): δ 0.91 (t, 3H, ³J = 6.8 Hz), 1.53–1.60 (m, 4H), 1.92-2.03 (m, 5H), 2.30-2.34 (m, 2H), 2.53 (s, 3H), 3.00-3.03 (m, 2H), 4.49 (d, 2H, ${}^{3}J$ = 5.8 Hz), 7.30 (d, 1H, ${}^{3}J$ = 8.8 Hz), 7.59 (t, 1H, ${}^{3}J$ = 7.8 Hz), 7.68 (s, 1H), 7.78 (t, 1H, ${}^{3}J$ = 7.8 Hz), 8.29 (d, 1H, ${}^{3}J$ = 7.8 Hz), 8.36 (d, 1H, ${}^{3}J$ = 8.8 Hz), 8.46 (d, 1H, ${}^{3}J$ = 7.8 Hz). ${}^{13}C$ NMR (100 MHz, CDCl₃): δ 12.1, 20.2, 21.5, 29.4 (2C), 36.0, 53.7 (2C), 61.3, 70.4, 119.9, 120.0, 121.6, 121.9, 125.0, 125.9, 126.7, 127.6, 130.7, 134.9, 138.9, 143.4, 159.0. LC-MS (ESI): $t_{\rm R}$ = 5.64 min; [M + H]⁺ 349.33. HRMS/ESI: calcd for $C_{23}H_{20}N_2O [M + H]^+$ 349.2280, found 349.2266.

3-Fluoro-6-(1-propylpiperidin-4-yl)methyloxyphenanthridine (4i). Starting from 3i (100 mg, 0.47 mmol), using general procedure A and cyclohexane/ethyl acetate 7/3 with 5% of NEt₃ as the eluent for the chromatography, 4i was obtained as a colorless oil (107 mg). Yield: 65%. IR (KBr): ν (cm⁻¹) 2995, 2852, 1588, 1463, 1260, 1088, 1019, 799, 770. ¹H NMR (400 MHz, $CDCl_3$: δ 0.91 (t, 3H, ³J = 7.8 Hz), 1.54–1.64 (m, 9H), 1.90–2.02 (m, 5H), 2.30-2.34 (m, 2H), 3.01-3.04 (m, 2H), 4.48 (d, 2H, $^{3}J = 5.8$ Hz), 7.19–7.28 (m, 1H), 7.52 (dd, 1H, ${}^{3}J$ = 10.8 Hz, ${}^{3}J$ = 2.9 Hz), 7.62 $(t, 1H, {}^{3}J = 7.8 \text{ Hz}), 7.80 (t, 1H, {}^{3}J = 6.8 \text{ Hz}), 8.34-8.43 (m, 3H). {}^{13}C$ NMR (100 MHz, CDCl₃): δ 12.1, 20.2, 29.3 (2C), 35.9, 53.7 (2C), 61.3, 70.3, 112.7 (d, ${}^{2}J = 22$ Hz), 112,9 (d, ${}^{2}J = 23$ Hz), 119.0 (d, J = 1Hz), 119.6, 121.7, 123.7 (d, J = 10 Hz), 125.2, 127.0, 131.1, 134.5, 144.8 (d, J = 12 Hz), 159.7, 163.0 (d, ${}^{1}J = 246$ Hz). LC–MS (ESI): $t_{\rm R}$ = 5.47 min; $[M + H]^+$ 353.28. HRMS/EI: calcd for $C_{22}H_{25}FN_2O$ 352.1950, found 352.1941.

4 - Methyl - 6 - (1 - propylpiperidin - 4 - yl) methyloxyphenanthridine (4j). Starting from 3j (217 mg, 1.03 mmol), using general procedure A and cyclohexane/ethyl acetate 9/1 with 5% of NEt₃ as the eluent for the chromatography, 4j was obtained as a white powder (170 mg). Yield: 47%. Mp: 93–95 °C. IR (KBr): ν (cm^{-1}) 2938, 2764, 1589, 1312, 760. ¹H NMR (400 MHz, CDCl₃): δ 0.91 (t, 3H, ${}^{3}J$ = 7.5 Hz,), 1.51-1.62 (m, 4H), 1.92-2.04 (m, 5H), 2.30–2.33 (m, 2H), 2.73 (s, 3H), 3.01 (m, 2H), 4.52 (d, 2H, ${}^{3}J = 6.5$ Hz), 7.37 (dd, 1H, ${}^{3}J$ = 8.0 Hz, ${}^{3}J$ = 7.0 Hz), 7.48–7.50 (m, 1H), 7.61 $(ddd, 1H, {}^{3}J = 8.0 Hz, {}^{3}J = 7.5 Hz, {}^{4}J = 1.5 Hz), 7.78 (ddd, 1H, {}^{3}J = 8.0 Hz, {}$ Hz, ${}^{3}J = 7.0$ Hz, ${}^{4}J = 1.5$ Hz), 8.27–8.29 (m, 1H), 8.37 (dd, 1H, ${}^{3}J =$ 8.1 Hz, ${}^{4}J$ = 1.4 Hz), 8.49–8.51 (m, 1H). ${}^{13}C$ NMR (100 MHz, CDCl₃): δ 12.1, 18.3, 20.2, 29.4 (2C), 35.9, 53.7 (2C), 61.2, 70.3, 119.8, 119.9, 122.0, 122.1, 123.7, 124.9, 126.9, 129.4, 130.6, 135.2, 135.7, 141.8, 157.6. LC-MS (ESI): $t_{\rm R}$ = 5.65 min; $[M + H]^+$ 349.57. HRMS/EI: calcd for C23H28N2O 348.2201, found 348.2215.

4 - Methoxy - 6 - (1 - propylpiperidin - 4 - yl) methyloxyphenanthridine (4k). Starting from 3k (150 mg, 0.66 mmol), using general procedure A and cyclohexane/ethyl acetate 9/1 with 5% of NEt₃ as the eluent for the chromatography, 4k was obtained as a white powder (153 mg). Yield: 47%. Mp: 99-100 °C. IR (KBr): ν (cm⁻¹) 3433, 2951, 2768, 1590, 1321, 1256, 748. ¹H NMR (400 MHz, CDCl₃): δ 0.92 (t, 3H, ³J = 7.8 Hz), 1.52–1.67 (m, 4H), 1.94-2.04 (m, 5H), 2.31-2.35 (m, 2H), 3.01-3.04 (m, 2H), 4.08 (s, 3H), 4.56 (d, 2H, ${}^{3}J$ = 5.9 Hz), 7.10 (d, 1H, ${}^{3}J$ = 7.8 Hz), 7.42 (t, 1H, ${}^{3}J$ = 8.8 Hz), 7.64 (t, 1H, ${}^{3}J$ = 7.8 Hz), 7.80 (t, 1H, ${}^{3}J$ = 8.8 Hz), 8.03 (d, 1H, ${}^{3}J$ = 7.8 Hz), 8.40 (d, 1H, ${}^{3}J$ = 7.8 Hz), 8.49 (d, 1H, ${}^{3}J$ = 7.8 Hz). ¹³C NMR (100 MHz, CDCl₃): δ 12.1, 20.2, 29.3 (2C), 36.1, 53.7 (2C), 56.5, 61.3, 70.4, 109.4, 114.4, 120.2, 122.4, 123.6, 124.3, 125.1, 127.3, 130.8, 133.8, 134.9, 154.5, 158.4. LC-MS (ESI): $t_{\rm R}$ = 5.24 min; [M + H]⁺ 365.38. HRMS/EI: calcd for C₂₃H₂₈N₂O₂ 364.2150, found 364.2139.

4 - **C** h l o r o - **6** - (**1** - p r o p y l p i p e r i d i n - 4 - y l) - methyloxyphenanthridine (4l). Starting from 3l (150 mg, 0.65 mmol), using general procedure A and cyclohexane/ethyl acetate 9/1 with 5% of NEt₃ as the eluent for the chromatography, 4l was obtained

as a white powder (149 mg). Yield: 62%. Mp: 75–77 °C. IR (KBr): ν (cm⁻¹) 3434, 2919, 2852, 1591, 1458, 1399, 1342, 1097, 747. ¹H NMR (400 MHz, CDCl₃): δ 0.91 (t, 3H, ³*J* = 6.8 Hz), 1.52–1.62 (m, 4H), 1.92–2.03 (m, 5H), 2.30–2.34 (m, 2H), 3.00–3.03 (m, 2H), 4.60 (d, 2H, ³*J* = 6.8 Hz), 7.38 (t, 1H, ³*J* = 7.8 Hz), 7.67 (t, 1H, ³*J* = 6.8 Hz), 7.73 (d, 1H, ³*J* = 7.8 Hz), 7.83 (t, 1H, ³*J* = 6.8 Hz), 8.33 (d, 1H, ³*J* = 7.8 Hz), 8.40 (d, 1H, ³*J* = 7.8 Hz), 8.49 (d, 1H, ³*J* = 8.8 Hz). ¹³C NMR (100 MHz, CDCl₃): δ 12.1, 20.2, 29.3 (2C), 35.9, 53.7 (2C), 61.2, 70.8, 120.1, 120.8, 122.2, 124.0, 124.1, 125.2, 127.8, 129.1, 131.2, 132.0, 134.7, 139.8, 159.2. LC–MS (ESI): $t_{\rm R}$ = 5.64 min; [M + H]⁺ 369.35, 371.30. HRMS/ESI: calcd for C₂₃H₂₆ClN₂O [M + H]⁺ 369.1734, found 365.1729.

4 - Fluoro - 6 - (1 - propylpiperidin - 4 - yl) methyloxyphenanthridine (4m). Starting from 3m (260 mg, 1.22 mmol), using general procedure A and cyclohexane/ethyl acetate 8/2 with 5% of NEt₃ as the eluent for the chromatography, 4m was obtained as a white powder (288 mg). Yield: 67%. Mp: 105-106 °C. IR (KBr): ν (cm⁻¹) 2925, 1591, 1348, 1317, 1234, 753. ¹H NMR (400 MHz, CDCl₃): δ 0.91 (t, 3H, ³J = 7.5 Hz), 1.51–1.64 (m, 4H), 1.93– 2.03 (m, 5H), 2.31–2.34 (m, 2H), 3.02–3.04 (m, 2H), 4.55 (d, 2H, ³J = 6.0 Hz), 7.33–7.41 (m, 2H), 7.67 (ddd, 1H, ³J = 8.0 Hz, ³J = 7.0 Hz, ${}^{4}J = 1.0$ Hz), 7.82 (ddd, 1H, ${}^{3}J = 8.2$ Hz, ${}^{3}J = 7.2$ Hz, ${}^{4}J = 1.4$ Hz), 8.17-8.18 (m, 1H), 8.39-8.41 (m, 1H), 8.46 (d, 1H, ${}^{3}J = 8.5$ Hz). ${}^{13}C$ NMR (100 MHz, CDCl₃): δ 12.1, 20.2, 29.3 (2C), 36.0, 53.6 (2C), 61.2, 70.7, 113.9 (d, ²J = 20 Hz), 117.5 (d, J = 4 Hz), 120.3, 122.2, 123.8 (d, J = 8 Hz), 124.5 (d, J = 2 Hz), 125.2, 127.7, 131.2, 132.7 (d, $^{2}J = 11$ Hz), 134.2 (d, J = 3 Hz), 157.5 (d, $^{1}J = 250$ Hz), 159.1. LC-MS (ESI): $t_{\rm R} = 5.32$ min; $[M + H]^+$ 353.30. HRMS/EI: calcd for C₂₂H₂₅FN₂O 352.1951, found 352.1943.

7 - Fluoro - 6 - (1 - propylpiperidin - 4 - yl) methyloxyphenanthridine (4n). In sealed tube were introduced KOH (1.07 g, 19 mmol), 2'-fluoro-3-fluorobiphenyl-2-carbonitrile⁴¹ (0.82 g, 3.8 mmol), and t-BuOH (30 mL). The tube was heated to 150 °C for 0.5 h. Water (20 mL) was added and the resulting precipitate was filtered. The solid was then dried under vacuum to afford a mixture of the expected 7-fluorophenanthridin-6(5H)-one along with side products. The mixture was then subjected to general procedure A using cyclohexane/ethyl acetate 9/1 as the eluent for the chromatography. 4n was obtained as yellow oil (0.12 g). Yield: 9%. IR (KBr): ν (cm⁻¹) 3432, 2931, 2765, 1595, 1338, 758. ¹H NMR (400 MHz, CDCl₃): δ 0.91 (t, 3H, ³J = 6.8 Hz), 1.52–1.54 (m, 4H), 1.99– 2.02 (m, 5H), 2.30–2.34 (m, 2H), 3.00–3.04 (m, 2H), 4.47 (d, 2H, ³J = 6.8 Hz), 7.28–7.31 (m, 1H), 7.47 (t, 1H, ${}^{3}J$ = 6.8 Hz), 7.63 (t, 1H, ${}^{3}J$ = 6.8 Hz), 7.72 (m, 1H), 7.83 (d, 1H, ${}^{3}J$ = 9.8 Hz), 8.29 (d, 1H, ${}^{3}J$ = 8.7 Hz), 8.36 (d, 1H, ${}^{3}J$ = 6.8 Hz). ${}^{13}C$ NMR (100 MHz, CDCl₃): δ 12.1, 20.2, 29.3 (2C), 35.9, 53.7 (2C), 61.3, 70.3, 109.7 (d, J = 9 Hz), 111.7 (d, J = 5 Hz), 114.1 (d, ²J = 23 Hz), 121.2, 122.5, 124.5, 127.6, 129.4, 131.4 (d, ²*J* = 10 Hz), 137.7, 143.4, 157.6 (d, *J* = 7 Hz), 160.23 (d, ¹J = 262 Hz). LC-MS (ESI): $t_{\rm R}$ = 5.38 min; [M + H]⁺ 353.47. HRMS/EI: calcd for C22H25FN2O 352.1950, found 352.1935

8-Nitro-6-(1-propylpiperidin-4-yl)methyloxyphenanthridine (40). Starting from **30** (0.80 g, 3.3 mmol), following general procedure A and using cyclohexane/ethyl acetate (9/1) as eluent for the chromatography, **40** was obtained as a white powder (0.72 g). Yield: 57%. Mp: 123–125 °C. IR (KBr): ν (cm⁻¹) 2940, 2765, 1604, 1344. ¹H NMR (400 MHz, CDCl₃): δ 0.92 (t, 3H, ³J = 7.8 Hz), 1.53–1.58 (m, 4H), 1.95–2.05 (m, 5H), 2.31–2.35 (m, 2H), 3.02–3.05 (m, 2H), 4.52 (d, 2H, ³J = 6.8 Hz), 7.54 (t, 1H, ³J = 6.8 Hz), 7.73 (t, 1H, ³J = 6.8 Hz), 7.90 (d, 1H, ³J = 7.8 Hz), 8.42 (d, 1H, ³J = 7.8 Hz), 8.55 (m, 2H), 9.19 (d, 1H, ⁴J = 1.9 Hz). ¹³C NMR (100 MHz, CDCl₃): δ 12.1, 20.2, 29.3 (2C), 35.9, 53.5 (2C), 61.3, 70.3, 119.8, 121.0, 121.4, 123.0, 123.5, 124.5, 125.1, 128.2, 130.9, 138.9, 144.7, 146.2, 158.4. LC–MS (ESI): $t_{\rm R}$ = 5.39 min; [M + H]⁺ 380.36. HRMS/EI: calcd for C₂₂H₂₅N₃O₃ 379.1895, found 379.1913.

8 - M e t h o x y - 6 - (1 - p r o p y | p i p e r i d i n - 4 - y |)methyloxyphenanthridine (4p). Starting from 3p (0.80 g, 3.55 mmol), following general procedure A and using cyclohexane/ethyl acetate (9/1) as the eluent for the chromatography, 4p was obtained as a white powder (0.90 g). Yield: 70%. Mp: 92–94 °C. IR (KBr): ν (cm⁻¹) 3430, 2765, 2940, 1590, 1462, 1219. ¹H NMR (400 MHz, CDCl₃): δ 0.86 (t, 3H, ³*J* = 6.8 Hz), 1.51–1.57 (m, 4H), 1.93–2.03 (m, 5H), 2.30–2.34 (m, 2H), 3.00–3.03 (m, 2H), 3.98 (s, 3H), 4.51 (d, 2H, ³*J* = 6.8 Hz), 7.43 (m, 2H), 7.45 (t, 1H, ³*J* = 6.8 Hz), 7.71 (d, 1H, ³*J* = 2.9 Hz), 7.84 (d, 1H, ³*J* = 8.8 Hz), 8.33 (d, 1H, ³*J* = 7.8 Hz), 8.42 (d, 1H, ³*J* = 8.8 Hz). ¹³C NMR (100 MHz, CDCl₃): δ 12.1, 20.2, 29.3 (2C), 35.8, 53.7 (2C), 55.5, 61.3, 70.3, 105.3, 120.8, 121.3, 121.4, 122.4, 123.5, 124.3, 127.6, 127.7, 128.9, 142.2, 158.2, 158.7. LC–MS (ESI): $t_{\rm R}$ = 5.47 min; [M + H]⁺ 365.33. HRMS/EI: calcd for C₂₃H₂₈N₂O₂ 364.2150, found 364.2135.

8-Fluoro-6-(1-propylpiperidin-4-yl)methyloxyphenanthridine (4q). Starting from 3q (0.26 g, 1.22 mmol), following general procedure A and using cyclohexane/ethyl acetate (9/1) as the eluent for the chromatography, 4q was obtained as a white powder (0.19 g). Yield: 44%. Mp: 70–71 °C. IR (KBr): ν (cm^{-1}) 2939, 755. ¹H NMR (400 MHz, CDCl₃): δ 0.92 (t, 3H, ³J = 7.0 Hz), 1.53-1.60 (m, 4H), 1.92-2.02 (m, 5H), 2.31-2.34 (m, 2H), 3.01-3.03 (m, 2H), 4.47 (d, 2H, ${}^{3}J = 6.8$ Hz), 7.48 (t, 1H, ${}^{3}J = 7.5$ Hz), 7.52 (dt, ${}^{3}J$ = 8.5 Hz, ${}^{4}J$ = 2.5 Hz, 1H), 7.61 (t, 1H, ${}^{3}J$ = 7.5 Hz), 7.86 (d, 1H, ${}^{3}J$ = 8.0 Hz), 7.97 (dd, 1H, ${}^{3}J$ = 9.0 Hz, ${}^{4}J$ = 2.5 Hz), 8.34 (d, 1H, ${}^{3}J$ = 8.0 Hz), 8.48 (dd, 1H, ${}^{3}J$ = 9.0 Hz, ${}^{4}J$ = 5.5 Hz). ${}^{13}C$ NMR (100 MHz, CDCl₃): δ 12.1, 20.2, 29.3 (2C), 35.9, 53.7 (2C), 61.3, 70.3, 110.1 (d, ${}^{2}J$ = 22 Hz), 119.8 (d, ${}^{2}J$ = 22 Hz), 121.6 (d, J = 7 Hz), 121.9 (d, J = 11 Hz), 122.0, 124.5 (d, J = 7 Hz), 124.7, 128.0, 128.7, 131.5 (d, J = 2 Hz), 143.0, 158.2 (d, J = 2 Hz), 161.7 (d, J = 246 Hz). LC-MS (ESI): $t_{\rm R}$ = 5.41 min; [M + H]⁺ 353.31. HRMS/EI: calcd for C22H25FN2O 352.1950, found 352.1958.

9 - M e t h y l - 6 - (1 - p r o p y l p i p e r i d i n - 4 - y l) methyloxyphenanthridine (4r). Starting from 3r (1.00 g, 4.77 mmol), following general procedure A and using cyclohexane/ethyl acetate (9/1) as the eluent for the chromatography 4r was obtained as a white powder (1.18 g). Yield: 71%. Mp: 90–91 °C. IR (KBr): ν (cm⁻¹) 3411, 3064, 2933, 1596, 1336, 758. ¹H NMR (400 MHz, CDCl₃): δ 0.90 (t, 3H, ³J = 6.8 Hz), 1.50–1.61 (m, 4H), 1.92–2.01 (m, 5H), 2.30–2.32 (m, 2H), 2.60 (s, 3H), 2.99–3.02 (m, 2H), 4.48 (d, 2H, ³J = 6.8 Hz), 7.42–7.46 (m, 2H), 7.59 (t, 1H, ³J = 6.8 Hz), 7.83 (d, 1H, ³J = 8.8 Hz), 8.23–8.26 (m, 2H), 8.37 (d, 1H, ³J = 7.8 Hz). ¹³C NMR (100 MHz, CDCl₃): δ 12.1, 20.2, 22.3, 29.3 (2C), 35.9, 53.7 (2C), 61.3, 70.3, 118.1, 121.6, 122.0, 122.3, 124.0, 124.9, 127.6, 128.6, 128.7, 134.8, 141.1, 143.6, 159.0. LC–MS (ESI): $t_{\rm R} = 5.61$ min; [M + H]⁺ 349.32. HRMS/EI: calcd for C₂₃H₂₈N₂O 348.2201, found 348.2202.

9-Fluoro-6-(1-propylpiperidin-4-yl)methyloxyphenanthridine (4s). Starting from 3s (0.20 g, 0.94 mmol), following general procedure A and using cyclohexane/ethyl acetate (9/1) as the eluent for the chromatography, 4s was obtained, after recrystalisation in MeCN, as a white powder (0.20 g). Yield: 62%. Mp: 79-80 °C. IR (KBr): ν (cm⁻¹) 3399, 2944, 2765, 1593, 1336, 762. ¹H NMR (400 MHz, CDCl₃): δ 0.90 (t, 3H, ³J = 7.2 Hz), 1.52– 1.59 (m, 4H), 1.89-1.99 (m, 5H), 2.30-2.33 (m, 2H), 3.00 (m, 2H), 4.48 (d, 2H, ${}^{3}J$ = 6.8 Hz), 7.33 (ddd, 1H, ${}^{3}J$ = 8.9 Hz, ${}^{3}J$ = 8.2 Hz, ${}^{4}J$ = 2.5 Hz), 7.47 (ddd, 1H, ${}^{3}J = 8.1$ Hz, ${}^{3}J = 7.1$ Hz, ${}^{4}J = 1.3$ Hz), 7.64 $(ddd, 1H, {}^{3}J = 8.1 Hz, {}^{3}J = 7.1 Hz, {}^{4}J = 1.4 Hz), 7.86 (dd, 1H, {}^{3}J = 8.1 Hz)$ Hz, ${}^{4}J = 1.4$ Hz), 8.04 (dd, 1H, ${}^{3}J = 10.7$ Hz, ${}^{4}J = 2.9$ Hz), 8.28 (dd, 1H, ${}^{3}J = 8.3$ Hz, ${}^{4}J = 1.4$ Hz), 8.39 (dd, 1H, ${}^{3}J = 8.8$ Hz, ${}^{3}J = 5.8$ Hz). ¹³C NMR (100 MHz, CDCl₃): δ 12.1, 20.2, 29.3 (2C), 35.9, 53.7 (2C), 61.3, 70.3, 107.2 (d, ${}^{2}J = 22$ Hz), 115.8 (d, ${}^{2}J = 23$ Hz), 116.9 (d, ${}^{4}J = 1$ Hz), 121.9 (d, ${}^{4}J = 3$ Hz), 122.3, 124.3, 127.8, 127.9 (d, ${}^{3}J = 10$ Hz), 129.3, 137.1 (d, ³*J* = 11 Hz), 143.8, 158.5, 164.3 (d, ¹*J* = 249 Hz). LC-MS (ESI): $t_{\rm R}$ = 5.45 min; [M + H]⁺ 353.28. HRMS/EI: calcd for C22H25FN2O 352.1950, found 352.1938.

5-(1-Propylpiperidin-4-yl)methyloxybenzo[c]-2,6-naphthyridine (4t). Starting from 3t (0.1 g, 0.5 mmol), following general procedure A and using cyclohexane/ethyl acetate (4/1) and cyclohexane/ethyl acetate (1/1) as the eluents for the chromatography, 4t was obtained as a white powder (72 mg). Yield: 42%. Mp: 113–115 °C. IR (KBr): ν (cm⁻¹) 2953, 2932, 1613, 1585, 1459, 1337, 1235, 1128, 1985, 844, 768, 673. ¹H NMR (400 MHz, CDCl₃): δ 0.92 (t, 3H, ³*J* = 7.4 Hz), 1.50–1.61 (m, 4H), 1.91–2.03 (m, 5H), 2.32 (m, 2H), 3.02 (d, 2H, *J* = 11.7 Hz), 4.51 (d, 2H, ³*J* = 6.5 Hz), 7.55 (t, 1H, *J* = 7.6 Hz), 7.69 (t, 1H, *J* = 7.5 Hz), 7.90 (d, 1H, ³*J* = 8.3 Hz), 8.12 (d,

1H, ${}^{3}J = 5.3$ Hz), 8.54 (d, 1H, ${}^{3}J = 8.3$ Hz), 8.83 (d, 1H, ${}^{3}J = 5.3$ Hz), 9.92 (s, 1H). 13 C NMR (100 MHz, CDCl₃): δ 12.0, 20.1, 29.1 (2C), 35.7, 53.5 (2C), 61.1, 70.8, 117.1, 120.2, 121.4, 124.1, 125.2, 127.9, 128.6, 129.5, 143.5, 146.1, 143.4, 157.5. LC–MS (ESI): $t_{\rm R} = 4.59$ min; [M + H]⁺ 336.25. HRMS/ESI: calcd for C₂₁H₂₆N₃O [M + H]⁺ 336.2076, found 336.2067.

5-(1-Propylpiperidin-4-yl)methyloxybenzo[h]-1,6-naphthyridine (4u). Starting from 3u (0.1 g, 0.5 mmol), following general procedure A and using cyclohexane/ethyl acetate (1/1) and ethyl acetate with 5% of NEt₃ as the eluents for the chromatography, 4u was obtained as a white powder (92 mg). Yield: 54%. Mp: 114-115 °C. IR (KBr): ν (cm⁻¹) 2931, 1605, 1590, 1458, 1328, 767, 733. ¹H NMR (400 MHz, CDCl₃): δ 0.84 (t, 3H, ³J = 7.3 Hz), 1.18 (brs, 1H), 1.43– 1.56 (m, 3H), 1.18–1.96 (m, 5H), 2.23–2.27 (m, 2H), 2.95 (d, 2H, J = 11.2 Hz), 4.44 (d, 2H, ${}^{3}I$ = 6.3 Hz), 7.45-7.50 (m, 2H), 7.62-7.65 (m, 1H), 7.80 (d, 1H, ${}^{3}J$ = 7.5 Hz), 8.55 (dd, 1H, ${}^{3}J$ = 8.2 Hz, ${}^{4}J$ = 1.4 Hz), 8.88 (dd, 1H, ³J = 8.1 Hz, ⁴J = 1.4 Hz), 9.03 (dd, 1H, ³J = 4.4 Hz, ${}^{4}J = 1.2 \text{ Hz}$). ${}^{13}\text{C}$ NMR (100 MHz, CDCl₃): δ 12.1, 20.2, 29.3 (2C), 35.9, 53.6 (2C), 61.2, 70.8, 115.4, 122.3, 123.5, 123.7, 124.9, 127.2, 130.4, 133.0, 144.9, 150.8, 152.9, 158.4. LC-MS (ESI): $t_{\rm R}$ = 4.84 min; [M + H]⁺ 336.28. HRMS/EI: calcd for C₂₁H₂₅N₃O 335.1997, found 335.1998.

7-Fluoro-5-(1-propylpiperidin-4-yl)methyloxybenzo[h]-1,6naphthyridine (4v). Starting from 3v (1 g, 4.6 mmol), following general procedure A and using ethyl acetate and ethyl acetate/NEt₃ 98/2 as the eluents for the chromatography, 4v was obtained as a white powder (1.37 g). Yield: 83%. Mp: 119-120 °C. IR (KBr): ν (cm⁻¹) 2952, 2932, 1605, 1589, 1329, 1235, 1152, 774. ¹H NMR (400 MHz, CDCl₃): δ 0.91 (t, 3H, ³J = 6.8 Hz), 1.50–1.64 (m, 4H), 1.77 (brs, 1H), 1.90-2.04 (m, 4H), 2.30-2.34 (m, 2H), 3.02 (d, 2H, J =11.7 Hz), 4.56 (d, 2H, ³J = 6.8 Hz), 7.41–7.49 (m, 2H), 7.59 (dd, 1H, ${}^{3}J = 8.3$ Hz, ${}^{3}J = 4.8$ Hz), 8.64 (dd, 1H, ${}^{3}J = 7.8$ Hz, ${}^{4}J = 1.9$ Hz), 8.72 $(dd, 1H, {}^{3}J = 8.3 Hz, {}^{4}J = 1.9 Hz), 9.11 (dd, 1H, {}^{3}J = 4.8 Hz, {}^{4}J = 1.9$ Hz). ¹³C NMR (100 MHz, CDCl₃): δ 12.1, 20.2, 29.2 (2C), 35.8, 53.6 (2C), 61.2, 71.1, 115.6, 115.6 (d, ${}^{2}J = 19$ Hz), 119.2 (d, J = 4 Hz), 122.8, 124.4 (d, J = 7 Hz), 125.5 (d, J = 2 Hz), 133.2, 134.1 (d, ²J = 11 Hz), 150.3 (d, J = 3 Hz), 153.3, 157.0 (d, ¹J = 250 Hz), 158.6. LC-MS (ESI): $t_{\rm R} = 6.00$ min; $[M + H]^+$ 354.37. HRMS/EI: calcd for C₂₁H₂₄FN₃O 353.1903, found 353.1915.

2-Fluoro-3-(trimethylsilanyl)phenylboronic Acid (5). In a three necks round-bottom flask under N_2 at -80 °C were introduced (2-fluorophenyl)trimethylsilane⁴² (7.4 g, 44 mmol), THF (90 mL), and 1.3 M s-BuLi in n-hexane/cyclohexane 98/2 (33.82 mL, 44 mmol). The yellow solution was stirred for 0.75 h, trimethyl borate (5.49 mL, 48.4 mmol) was added, and the solution was stirred again for 0.75 h. The mixture was allowed to reach room temperature, hydrolyzed with water (200 mL), washed with Et_2O (3 × 150 mL), acidified to pH = 1 using 1 M HCl and extracted with Et_2O (3 × 150 mL). The combined organic layers were dried over MgSO₄, filtered, and evaporated in vacuo to afford 5 (6.4 g) as white crystals. Yield: 69%. Mp: 93-94 °C. IR (KBr): ν (cm⁻¹) 3512, 3351, 2952, 1423, 1351, 844, 760, 605. ¹H NMR (400 MHz, CDCl₃): δ 0.32 (s, 9H), 5.29 (s, 1H), 5.31 (s, 1H), 7.19 (td, 1H, ³J = 7.2 Hz, J = 1.5 Hz), 7.52 (m, 1H), 7.84 (td, 1H, ${}^{3}J$ = 7.2 Hz, J = 1.6 Hz). ${}^{13}C$ NMR (100 MHz, $CDCl_3$): $\delta -1.0$, 124.3 (d, ${}^{4}J = 2$ Hz), 125.6 (d, ${}^{2}J = 36$ Hz), 138.2 (d, ${}^{3}J = 7$ Hz), 138.8 (d, ${}^{3}J = 13$ Hz), 172.7 (d, ${}^{1}J = 235$ Hz), signal of the carbon bonded to the boron is missing.

2'-Fluoro-3'-(trimethylsilanyl)biphenyl-2-carbonitrile (6a). In a round-bottom flask under N₂ were introduced DME (15 mL) and water (15 mL). The solution was degassed by bubbling N₂ for 15 min, and Pd(OAc)₂ (62 mg, 0.27 mmol) and PPh₃ (144 mg, 0.55 mmol) were added. The solution was heated to 50 °C for 10 min, and 2-bromobenzonitrile (1 g, 5.5 mmol), **5** (1.75 g, 8.25 mmol), and Na₂CO₃ (2.33 g, 22 mmol) were added. The solution was heated to 90 °C for 14 h, cooled to room temperature, filtered over a pad of Celite, and extracted with EtOAc (3 × 50 mL). The combined organic layers were dried over MgSO₄, filtered, evaporated in vacuo, and purified by flash chromatography using cyclohexane/AcOEt 9/1 as the eluent to afford **6a** (1.45 g) as a colorless oil. Yield: 98%. IR (KBr): ν (cm⁻¹) 2957, 2227 (CN), 1637, 1412, 585, 842, 761. ¹H NMR (400 MHz, CDCl₃): δ 0.35 (s, 9H), 7.25 (t, 1H, ³*J* = 7.8 Hz), 7.40–7.53 (m, 4H), 7.65 (t, 1H, ³*J* = 7.8 Hz), 7.77 (d, 1H, ³*J* = 7.8 Hz). ¹³C NMR (100 MHz, CDCl₃): δ –1.0, 112.9, 118.1, 124.1 (d, *J* = 3 Hz), 125.0 (d, ²*J* = 19 Hz), 127.5 (d, ³*J* = 36 Hz), 127.9, 130.9, 132.4, 132.4, 133.2, 136.1 (d, *J* = 13 Hz), 140.1, 163.5 (d, ¹*J* = 242 Hz). HRMS/EI: calcd for C₁₆H₁₆FNSi 269.1036, found 269.1034.

2-(2-Fluoro-3-trimethylsilanylphenyl)nicotinonitrile (6b). The same procedure as for **6a**, starting from 2-chloronicotinonitrile (1 g, 7.2 mmol), Pd(OAc)₂ (81 mg, 0.36 mmol), PPh₃ (189 mg, 0.72 mmol), **5** (2.29 g, 10.8 mmol) and Na₂CO₃ (3.06 g, 28.8 mmol). Cyclohexane/AcOEt 8/2 was used as the eluent for chromatography to afford **6b** (1.85 g) as a colorless oil. Yield: 95%. IR (KBr): ν (cm⁻¹) 2957, 2231 (CN), 1604, 1428, 1414, 1251, 862, 842, 762. ¹H NMR (400 MHz, CDCl₃): δ 0.36 (s, 9H), 7.29 (m, 1H), 7.43 (dd, 1H, ³*J* = 8.3 Hz, ³*J* = 4.9 Hz), 7.53–7.60 (m, 2H), 8.08 (d, 1H, ³*J* = 7.8 Hz), 8.90 (dd, 1H, ³*J* = 4.9 Hz, ⁴*J* = 1.9 Hz). ¹³C NMR (100 MHz, CDCl₃): δ –1.0, 110.6, 116.5, 122.0, 124.2 (d, *J* = 3 Hz), 124.7 (d, ²*J* = 19 Hz), 127.5 (d, ²*J* = 31 Hz), 132.3 (d, *J* = 2 Hz), 137.2 (d, *J* = 11 Hz), 140.6, 152.5, 157.9, 163.8 (d, ⁻¹*J* = 243 Hz). HRMS/EI: calcd for C₁₅H₁₅FN₂Si 270.0988, found 270.0979.

2'-Fluoro-3'-iodobiphenyl-2-carbonitrile 7a. In a roundbottom flask were introduced **6a** (1.05 g, 3.7 mmol), DCM (30 mL) and ICl (279 μ L, 5.6 mmol). The solution was allowed to stir for 4.5 h and a saturated Na₂S₂O₃ solution in water (40 mL) was added. The aqueous layer was then extracted with DCM (3 × 30 mL) and the combined organic layers were dried MgSO₄, filtered and evaporated in *vacuo* to afford 7a (1.11 g) as a white powder. Yield: 88%. Mp: 123–125 °C. IR (KBr): ν (cm⁻¹) 2222 (CN), 1443, 1425, 788, 759. ¹H NMR (400 MHz, CDCl₃): δ 7.03 (t, 1H, ³J = 7.8 Hz), 7.40 (m, 1H), 7.49–7.53 (m, 2H), 7.67 (td, 1H, J = 7.8 Hz, J = 1.9 Hz), 7.67 (d, 1H, ³J = 7.8 Hz), 7.84 (m, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 82.2 (d, ²J = 25 Hz), 112.6, 117.7, 125.8 (d, J = 5 Hz), 126.3 (d, ²J = 17 Hz), 128.6, 130.8 (d, J = 2 Hz), 131.4 (d, J = 2 Hz), 132.6, 133.3, 138.6, 140.2 (d, J = 2 Hz), 158.2 (d, ¹J = 246 Hz). HRMS/EI: calcd for C₁₃H₇FIN 322.9607, found 322.9601.

2-(2-Fluoro-3-iodophenyl)nicotinonitrile (7b). The same procedure as for 7a was used, starting from **6b** (0.82 g, 3 mmol) and ICl (228 μ L, 4.5 mmol). The crude was purified by flash chromatography using cyclohexane/AcOEt 8/2 as the eluent to afford **7b** (0.82 g) as a white powder. Yield: 84%. Mp: 100–101 °C. IR (KBr): ν (cm⁻¹) 2228 (CN), 1424, 1227, 805, 761, 725. ¹H NMR (400 MHz, CDCl₃): δ 7.08 (t, 1H, ³J = 7.8 Hz), 7.48 (dd, 1H, ³J = 7.8 Hz, ³J = 4.9 Hz), 7.56 (m, 1H), 7.92 (m, 1H), 8.11 (dd, 1H, ³J = 7.8 Hz, ⁴J = 1.9 Hz), 8.92 (dd, 1H, ³J = 4.9 Hz, ⁴J = 1.9 Hz). ¹³C NMR (100 MHz, CDCl₃): δ 82.3 (d, ²J = 26 Hz), 110.4, 116.1, 122.6, 126.0 (d, J = 5 Hz), 126.1 (d, ²J = 16 Hz), 131.4 (d, J = 2 Hz), 140.8, 141.4 (d, J = 2 Hz), 152.6, 156.5, 158.5 (d, ¹J = 247 Hz). HRMS/EI: calcd for C₁₂H₆FIN₂ 323.9568, found 323.9559.

4-lodophenanthridin-6(5*H***)-one (8a). The same procedure as for compound 3v was used, with 7a (1.11 g, 3.4 mmol), KOH (0.96 g, 14 mmol), and t-BuOH (30 mL) and heating at 150 °C for 1 h. 8a (0.73 g) was obtained as a white powder. Yield: 67%. Mp: 240–242 °C. IR (KBr): \nu (cm⁻¹) 3274, 1654 (CO), 1603, 1351, 752, 709, 625. ¹H NMR (400 MHz, DMSO-d_6): \delta 7.04 (t, 1H, ³J = 7.8 Hz), 7.66 (t, 1H, ³J = 7.8 Hz), 7.86 (t, 1H, ³J = 7.8 Hz), 8.00 (d, 1H, ³J = 6.8 Hz), 8.33 (d, 1H, ³J = 6.8 Hz), 8.42 (d, 1H, ³J = 7.8 Hz), 8.50 (d, 1H, ³J = 8.8 Hz), 9.29 (brs, 1H). ¹³C NMR (100 MHz, DMSO-d_6): \delta 105.1, 119.0, 122.6, 123.6, 125.9, 127.5, 128.2, 132.5, 134.0, 137.3, 137.7, 139.3, 172.9. HRMS/EI: calcd for C₁₃H₈INO 320.9651, found 320.9665.**

7-lodobenzo[*h*]-1,6-naphthyridin-5(6*H*)-one (8b). The same procedure as for compound 3v was used, with 7b (0.7 g, 2.16 mmol), KOH (0.6 g, 10.8 mmol), and *t*-BuOH (35 mL) and heating at 150 °C for 1 h. 8b (0.51 g) was obtained as a white powder. Yield: 73%. Mp: 230–231 °C. IR (KBr): ν (cm⁻¹) 3325, 1660 (CO), 1594, 1424, 765, 621. ¹H NMR (400 MHz, CDCl₃): δ 7.11 (t, 1H, ³J = 7.8 Hz), 7.56 (dd, 1H, ³J = 7.8 Hz, ³J = 4.8 Hz), 8.01 (d, 1H, ³J = 7.8 Hz), 8.74 (dd, 1H, ³J = 7.8 Hz, ⁴J = 1.9 Hz), 8.80 (d, 1H, ³J = 6.8 Hz), 8.90 (brs, 1H), 9.04 (dd, 1H, ³J = 4.8 Hz, ⁴J = 1.9 Hz). ¹³C NMR (100 MHz, CDCl₃): δ 84.4, 121.1, 121.3, 123.5, 124.6, 125.6, 136.4, 136.8, 141.0, 150.8

154.4, 161.4. HRMS/EI: calcd for $C_{12}H_7IN_2O$ 321.9603, found 321.9592.

Ethyl 1-[3-(4-lodophenyl)propanoyl]piperidine-4-carboxylate (9). To a solution of 4-iododihydrocinamic $acid^{43}$ (5 g, 18.11 mmol) in DCM (50 mL) were added at room temperatue HOBt (3.67 g, 27.17 mmol), EDCI (5.21 g, 27.17 mmol), NEt₃ (3.79 mL, 27.17 mmol), and ethyl isonipecotate (3.07 mL, 19.92 mmol). The solution was allowed to stir at room temperature for 24 h, evaporated to dryness, and purified by silica gel chromatography using cyclohexane/ EtOAc 9/1 and 7/3 as the eluents to afford 9 (6.31 g) as white powder. Yield: 84%. Mp: 73-74 °C. IR (KBr): ν (cm⁻¹) 2953, 2930, 1729 (CO), 1644 (CO), 1447, 1178, 1040, 1006, 811. ¹H NMR (400 MHz, CDCl₃): δ 1.26 (t, 3H, ³J = 6.8 Hz), 1.55–1.65 (m, 2H), 1.90 (m, 2H), 2.49 (m, 1H), 2.58 (d, 2H, ${}^{3}J$ = 7.8 Hz), 2.79 (m, 1H), 2.91 $(d, 2H, {}^{3}J = 7.8 \text{ Hz}), 3.03 (m, 1H), 3.74 (m, 1H), 4.14 (t, 2H, {}^{3}J = 6.8$ Hz), 4.42 (m, 1H), 6.97 (d, 2H, ${}^{3}I = 8.3$ Hz), 7.60 (d, 2H, ${}^{3}I = 8.3$ Hz). ¹³C NMR (100 MHz, CDCl₃): δ 14.2, 27.8, 28.3, 30.8, 34.7, 40.9, 41.0, 44.7, 60.6, 91.2, 130.5 (2C), 137.5 (2C), 140.9, 170.1, 174.1. HRMS/EI: calcd for C17H22INO3 415.0644, found 415.0634.

{1-[3-(4-lodophenyl)propyl]piperidin-4-yl}methanol (10). To a solution of 9 (1.31 g, 3.15 mmol) in anhydrous THF (20 mL) at -5°C was added 1 M DIBALH solution in n-hexane (12.62 mL, 12.62 mmol). The mixture was allowed to stir at room temperature for 15 h, carefully hydrolyzed with water (30 mL), extracted with EtOAc (3 \times 50 mL), dried with MgSO₄, filtered, and evaporated. The crude product was then purified by silica gel chromatography using cyclohexane/EtOAc 9/1 and 7/3 as the eluents to afford 10 (0.96g) as a colorless oil. Yield: 85%. IR (KBr): ν (cm⁻¹) 3400 (OH), 2922, 1728, 1483, 1042, 1006, 797. ¹H NMR (400 MHz, CDCl₃): δ 1.26 (d, 1H, ${}^{3}J = 5.9$ Hz), 1.26 (m, 2H), 1.70–1.80 (m, 5H), 1.92 (m, 2H), 2.32 (t, 2H, ³J = 7.8 Hz), 2.56 (t, 2H, ³J = 7.8 Hz), 2.92 (m, 2H), 3.49 (d, 2H, ${}^{3}J$ = 6.8 Hz), 6.93 (d, 2H, ${}^{3}J$ = 8.3 Hz), 7.58 (d, 2H, ${}^{3}J$ = 8.3 Hz). ¹³C NMR (100 MHz, CDCl₃): δ 28.6, 28.8 (2C), 33.3, 38.6, 53.5 (2C), 58.2, 67.9, 92.0, 130.5 (2C), 137.3 (2C), 141.9. HRMS/EI: calcd for C₁₅H₂₂INO 359.0746, found 359.0759.

4-lodo-6-(1-propylpiperidin-4-yl)methyloxyphenanthridine (**11a**). Starting from **8a** (0.47 g, 1.46 mmol), using general procedure A and cyclohexane/ethyl acetate 8/2 as the eluent for the chromatography, **11a** was obtained as a yellow powder (0.51 g). Yield: 76%. Mp: 87–89 °C. IR (KBr): ν (cm⁻¹) 2926, 1591, 1396, 1339, 1136, 751. ¹H NMR (400 MHz, CDCl₃): δ 0.91 (t, 3H, ³J = 7.3 Hz), 1.51–1.64 (m, 4H), 1.93–2.09 (m, 5H), 2.31 (t, 2H, J = 7.8 Hz), 3.02 (d, 2H, J = 10.7 Hz), 4.63 (d, 2H, ³J = 6.8 Hz), 7.19 (t, 1H, J = 6.8 Hz), 7.67 (t, 1H, ³J = 7.8 Hz), 7.82 (t, 1H, ³J = 7.8 Hz), 8.20 (d, 1H, ³J = 7.8 Hz), (t, 2H, ³J = 7.3 Hz), 8.49 (d, 1H, ³J = 8.8 Hz). ¹³C NMR (100 MHz, CDCl₃): δ 12.1, 20.2, 29.2 (2C), 35.6, 53.5 (2C), 61.1, 71.2, 101.8, 120.2, 122.0, 122.6, 123.0, 125.2, 125.5, 127.8, 131.1, 132.9, 134.9, 138.9, 159.5. LC–MS (ESI): $t_{\rm R}$ = 5.84 min; [M + H]⁺ 461.28. HRMS/EI: calcd for C₂₂H₂₅IN₂O 460.1012, found 460.1008.

7-lodo-5-(1-propylpiperidin-4-yl)methyloxybenzo[*h***]-1,6naphthyridine (11b). Starting from 8b (0.16 g, 0.5 mmol), using general procedure A and cyclohexane/ethyl acetate 8/2 with 5% of NEt₃ as the eluent for the chromatography, 11b** was obtained as a yellow powder (0.16 g). Yield: 71%. Mp: 120–122 °C. IR (KBr): ν (cm⁻¹) 2917, 1603, 1588, 1341, 1093, 762. ¹H NMR (400 MHz, CDCl₃): δ 0.91 (t, 3H, ³*J* = 7.3 Hz), 1.51–1.59 (m, 4H), 1.91–2.08 (m, 5H), 2.32 (m, 2H), 3.02 (d, 2H, *J* = 8.7 Hz), 4.63 (d, 2H, ³*J* = 5.8 Hz), 7.27 (t, 1H, *J* = 7.8 Hz), 7.59 (dd, 1H, ³*J* = 7.8 Hz, ³*J* = 4.9 Hz), 8.28 (d, 1H, ³*J* = 8.7 Hz), 8.64 (dd, 1H, ³*J* = 7.8 Hz, ⁴*J* = 1.9 Hz), 8.96 (m, 1H), 9.11 (dd, 1H, ³*J* = 4.9 Hz, ⁴*J* = 1.9 Hz). ¹³C NMR (100 MHz, CDCl₃): δ 12.0, 20.0, 29.1 (2C), 35.5, 53.5 (2C), 61.0, 71.5, 100.6, 115.2, 122.7, 124.1, 124.3, 125.9, 133.1, 140.4, 144.1, 150.7, 153.2, 158.8 LC–MS (ESI): t_R = 5.22 min; [M + H]⁺ 462.22. HRMS/EI: calcd for C₂₁H₂₄IN₃O 461.0964, found 461.0970.

6-{**1**-[**3**-(**4**-lodophenyl)propyl]piperidin-4-yl}methyloxyphenanthridine (11c). Starting from 3a (0.5 g, 2.56 mmol), using general procedure A and cyclohexane/ethyl acetate 8/2 as the eluent for the chromatography, **11c** was obtained as a colorless oil (0.54 g). Yield: 39%. IR (KBr): ν (cm⁻¹) 2925, 1637, 1620, 1486, 1317, 759, 727. ¹H NMR (400 MHz, CDCl₃): δ 1.58 (m, 2H), 1.79– 2.05 (m, 7H), 2.37 (t, 2H, ${}^{3}J$ = 7.8 Hz), 2.59 (t, 2H, ${}^{3}J$ = 6.7 Hz), 3.00 (d, 2H, ${}^{3}J$ = 10.7 Hz), 4.50 (d, 2H, ${}^{3}J$ = 5.8 Hz), 6.95 (d, 2H, ${}^{3}J$ = 8.8 Hz), 7.48 (d, 1H, ${}^{3}J$ = 6.8 Hz), 7.59 (d, 2H, ${}^{3}J$ = 8.8 Hz), 7.63 (m, 2H), 7.82 (d, 1H, ${}^{3}J$ = 6.8 Hz), 7.86 (d, 1H, *J* = 8.8 Hz), 8.38 (d, 1H, ${}^{3}J$ = 6.8 Hz), 8.42 (d, 1H, ${}^{3}J$ = 7.8 Hz), 8.51(d, 1H, ${}^{3}J$ = 7.8 Hz). ${}^{13}C$ NMR (100 MHz, CDCl₃): δ 28.6, 29.3 (2C), 33.3, 35.8, 53.6 (2C), 58.3, 70.4, 90.7, 120.1, 121.8, 122.1, 122.3, 124.3, 125.0, 127.1, 127.7, 128.7, 130.5 (2C), 130.8, 134.7, 137.3 (2C), 141.8, 143.3, 158.9. LC-MS (ESI): $t_{\rm R}$ = 6.33 min; [M + H]⁺ 537.25. HRMS/ESI: calcd for C₂₈H₃₀IN₂O 537.1397, found 537.1401.

7-Fluoro-5-{1-[3-(4-iodophenyl)propyl]piperidin-4-yl}methyloxybenzo[h]-1,6-naphthyridine (11d). Starting from 3v (0.5 g, 2.33 mmol), using general procedure A and cyclohexane/ethyl acetate 8/2 as the eluent for the chromatography, 11d was obtained as a white powder (0.53 g). Yield: 41%. Mp: 142–144 °C. IR (KBr): ν (cm⁻¹) 2925, 1603, 1589, 1354, 1330, 1315, 1106, 794, 770. ¹H NMR (400 MHz, CDCl₃): δ 1.59 (m, 2H), 1.78-2.05 (m, 7H), 2.37 (t, 2H, ${}^{3}J = 7.8 \text{ Hz}$, 2.59 (t, 2H, ${}^{3}J = 6.7 \text{ Hz}$), 2.99 (d, 2H, ${}^{3}J = 10.7 \text{ Hz}$), 4.56 (d, 2H, ${}^{3}J = 5.8$ Hz), 6.95 (d, 2H, ${}^{3}J = 8.8$ Hz), 7.41–7.49 (m, 2H), 7.56-7.62 (m, 3H), 8.64 (dd, 1H, J = 7.8 Hz, J = 1.9 Hz), 8.73 (dd, 1H, ${}^{3}J = 8.3$ Hz, ${}^{4}J = 1.9$ Hz), 9.11 (dd, 1H, ${}^{3}J = 4.9$ Hz, ${}^{4}J = 1.9$ Hz). $^{13}\mathrm{C}$ NMR (100 MHz, CDCl₃): δ 28.5, 29.2 (2C), 33.3, 35.8, 53.5 (2C), 58.2, 71.0, 90.7, 115.6, 115.7 (d, ²*J* = 19 Hz), 119.2, 122.7, 124.4 (d, J = 7 Hz), 125.4 (d, J = 1 Hz), 130.5 (2C), 133.1, 134.1 $(d, {}^{2}J = 11$ Hz), 137.2 (2C), 141.8, 150.2 (d, J = 3 Hz), 153.2, 157.0 (d, ${}^{1}J = 250$ Hz), 158.5. LC-MS (ESI): $t_{\rm R} = 6.04$ min; $[M + H]^+$ 556.38. HRMS/ ESI: calcd for C₂₇H₂₈FIN₃O 556.1256, found 556.1260.

General Procedure B for the Synthesis of Stannylated Compounds 12a,b,d. In a Schlenk flask under nitrogen were introduced toluene (4 mL), water (0.4 mL), $Pd(OAc)_2$ (0.025 mmol), and PPh₃ (0.05 mmol). The mixture was heated at 50 °C for 0.3 h, and the iodinated derivative (11a, 11b, or 11d; 0.5 mmol in 7 mL of toluene) and hexa-*n*-butylditin (0.75 mmol) were added. The mixture was heated at 90 °C for 16 h, filtered on Celite, and evaporated in vacuo. The obtained crude oil was then purified by chromatography on silica gel using Et₂O and Et₂O/NEt₃ (99/1) as the eluents.

6-(1-Propylpiperidin-4-yl)methyloxy-4-(tributylstannyl)phenanthridine (12a). Starting from 11a and following general procedure B, **12a** was obtained as a colorless oil (140 mg). Yield: 45%. IR (KBr): ν (cm⁻¹) 2955, 2922, 2870, 2851, 1589, 1459, 1339, 1311, 761. ¹H NMR (400 MHz, CDCl₃): δ 0.85 (t, 6H, J = 6.3 Hz), 0.92 (t, 6H, J = 6.8 Hz), 1.16–1.20 (m, 4H), 1.27–1.43 (m, 10H), 1.50–1.62 (m, 10H), 1.97 (d, 2H, J = 9.7 Hz), 2.06 (t, 1H, J = 11.2 Hz), 2.36 (t, 2H, J = 7.8 Hz), 3.05 (d, 2H, J = 10.7 Hz), 4.48 (d, 2H, J = 5.8 Hz), 7.46 (t, 1H, ³J = 7.8 Hz), 7.61 (t, 1H, ³J = 7.8 Hz), 7.78 (m, 2H), 8.38 (t, 2H, J = 7.8 Hz), 8.50 (d, 1H, ³J = 8.7 Hz). ¹³C NMR (100 MHz, CDCl₃): δ 10.2 (3C), 12.0, 13.7 (3C), 20.0, 27.4 (3C), 29.1 (2C), 29.4 (3C), 35.7, 53.5 (2C), 61.1, 70.6, 119.9, 121.4, 121.9, 122.3, 124.1, 124.9, 126.9, 130.6, 135.4, 136.9, 143.6, 148.0, 157.7. HRMS/ESI: calcd for C₃₄H₅₃N₂OSn 625.3181, found 625.3186.

7-(1-Propylpiperidin-4-yl)methyloxy-5-(tributylstannyl) benzo[*h*]-1,6-naphthyridine (12b). Starting from 11b and following general procedure B, 12b was obtained as a colorless oil (139 mg). Yield: 44%. IR (KBr): ν (cm⁻¹) 2956, 2924, 2871, 2852, 1603, 1460, 1328, 1153, 773. ¹H NMR (400 MHz, CDCl₃): δ 0.85 (t, 6H, *J* = 7.3 Hz), 0.92 (t, 6H, *J* = 6.8 Hz), 1.16–1.21 (m, 4H), 1.25– 1.43 (m, 10H), 1.51–1.63 (m, 10H), 1.95 (d, 2H, *J* = 10.7 Hz), 2.06 (t, 1H, *J* = 11.2 Hz), 2.36 (t, 2H, *J* = 7.8 Hz), 3.06 (d, 2H, *J* = 10.7 Hz), 4.48 (d, 2H, *J* = 5.8 Hz), 7.51–7.56 (m, 2H), 7.86 (dd, 1H, ³*J* = 6.8 Hz, ⁴*J* = 1.9 Hz), 8.62 (dd, 1H, ³*J* = 7.8 Hz, ⁴*J* = 1.9 Hz), 8.92 (d, 1H, ³*J* = 7.8 Hz), 9.09 (dd, 1H, ³*J* = 4.9 Hz, ⁴*J* = 1.9 Hz). ¹³C NMR (100 MHz, CDCl₃): δ 10.2 (3C), 12.0, 13.5 (3C), 20.0, 27.4 (3C), 29.1 (3C), 29.3 (2C), 35.6, 53.4 (2C), 61.1, 70.9, 115.1, 122.0, 122.7, 123.9, 124.7, 132.9, 138.6, 142.9, 149.7, 151.3, 152.8, 157.3. HRMS/ ESI: calcd for C₃₃H₅₂N₃OSn 626.3133, found 626.3136.

7-Fluoro-5-{1-[3-(4-tributylstannylphenyl)propyl]piperidin-4-yl}methyloxybenzo[*h***]-1,6-naphthyridine (12d).** Starting from **11d** and following general procedure B, **12d** was obtained as a colorless oil (147 mg). Yield: 41%. IR (KBr): ν (cm⁻¹) 2954, 2925, 1608, 1591, 1462, 1331, 1314, 1240, 1151, 1083, 769. ¹H NMR (400 MHz, CDCl₃): δ 0.85 (t, 9H, J = 7.3 Hz), 0.92 (t, 6H, J = 8.1 Hz), 1.18–1.29 (m, 8H), 1.42–1.52 (m, 6H), 1.79–1.96 (m, 7H), 2.34 (t, 2H, J = 7.8 Hz), 2.06 (t, 2H, J = 7.8 Hz), 2.94 (d, 2H, J = 11.2 Hz), 4.48 (d, 2H, J = 6.1 Hz), 7.10 (d, 2H, ${}^{3}J$ = 7.8 Hz), 7.30 (d, 2H, ${}^{3}J$ = 7.8 Hz), 7.34–7.41 (m, 2H), 7.52 (dd, 1H, ${}^{3}J$ = 8.2 Hz, ${}^{3}J$ = 4.58 Hz), 8.57 (dd, 1H, ${}^{3}J$ = 8.2 Hz, ${}^{4}J$ = 1.8 Hz), 8.64 (m, 1H), 9.04 (dd, 1H, ${}^{3}J$ = 4.5 Hz, ${}^{4}J$ = 1.8 Hz). 1³C NMR (100 MHz, CDCl₃): δ 9.5 (3C), 13.6 (3C), 27.3 (3C), 28.7, 29.1 (3C), 29.2 (2C), 33.8, 35.8, 53.5 (2C), 58.6, 71.0, 115.6, 115.6 (d, {}^{2}J = 20 Hz), 119.2 (d, J = 4 Hz), 122.8, 124.4 (d, J = 7 Hz), 125.5 (d, J = 2 Hz), 128.1 (2C), 133.2, 134.1 (d, ${}^{2}J$ = 11 Hz), 136.4 (2C), 138.5, 141.8, 150.3 (d, J = 4 Hz), 153.3, 157.0 (d, ${}^{1}J$ = 250 Hz), 158.6. HRMS/ESI: calcd for C₃₉H₅₅FN₃OSn 720.3353, found 720.3356.

Pharmacological Assay and Screen. Binding of all compounds to native 5-HT₄R from guinea pig was determined using the method of Grossman.⁴⁴ For membrane preparations, male guinea pigs (300-350 g, Charles River) were subjected to euthanasia by cervical dislocation and decapitated. Brains were rapidly removed at 4 °C and striatal regions carefully dissected and pooled. The tissues were then suspended in 10 volumes of HEPES buffer (50 mM, pH 7.4) at 4 °C. After homogenization at 4 °C (Ultra-Turrax, maximal speed, 15 s), and ultracentrifugation (23 000g, 60 min, 4 °C), the pellet was resuspended in 10 volumes of HEPES buffer (50 mM, pH 7.4) at 4 °C in order to obtain a tissue concentration of about 100 mg protein/mL. The protein concentration was determined by the method of Lowry⁴⁵ using bovine serum albumin as standard. For radioligand binding studies, 600 μ g of membrane was incubated in duplicate at 37 °C for 30 min with [³H]GR 113808 (Perkin-Elmer), a fixed concentration of compound, and HEPES buffer (50 mM, pH 7.4) at 37 °C. Incubation was terminated by rapid vacuum filtration through 0.5% polyethylenimine-presoaked Whatman GF/B filters (Alpha Biotech) using a Brandel cell harvester. Filters were subsequently washed three times with 4 mL of HEPES buffer (50 mM, pH 7.4) at 4 °C. The method was validated from saturation studies: six concentrations of [3H]GR 113808 were used to give final concentrations of 0.02-0.8 nM, and nonspecific binding of [³H]GR 113808 was defined in the presence of 30 μ M serotonin to determine the K_d and the B_{max} . For competition studies, [³H]GR 113808 was used to give a final concentration of 0.1 nM. Percentages of inhibition of the binding of [3H]GR 113808 were obtained for concentrations of 10^{-6} and 10^{-8} M of the ligands tested. For some of these compounds, affinity constants were calculated from five-point inhibition curves using the EBDA-Ligand software and expressed as $K_i \pm SD$.

Ligands 4i, 4k, 4l, 4m, 4t, and 4u were submitted to the National Institute of Mental Health Psychoactive Drug Screening Program (NIMH PDSP) for assessment of binding affinity to human recombinant S-HT₄ receptors and to other serotonin receptors (S-HT_{1A-E}, S-HT_{2A-C}, S-HT₃, S-HT_{5A}, S-HT₆, S-HT₇). For human S-HT₄R K_i determinations, [³H]GR 113808 was used as hot ligand and GR 113808 as reference. S-HT₄R membrane was made with HEK T cells transiently transfected with human S-HT₄ DNA. The binding protocol is the same as for other S-HT subtypes in the PDSP assay protocol book. Selected ligands 4k, 4l, 4m, and 4u were also assessed for agonist/partial agonist activity and for antagonist activity. For S-HT₄R-mediated Gs activation, cAMP was measured using GloSensor tech from Promega, with serotonin as a reference agonist according to a literature procedure.⁴⁶ For other experimental details, please refer to the PDSP Web site http://pdsp.med.unc.edu/ and click on "Binding Assay".

Other selected ligands 4v, 11a, 11b, and 11d were evaluated for binding to human 5-HT₄ and other serotonin receptors (5-HT_{1A-E}, 5-HT_{2A-C}, 5-HT₃, 5-HT₅, 5-HT₆, 5-HT₇) as well as for intrinsic activity at CEREP. Detailed assay protocols are available at the CEREP Web site (http://www.cerep.com).

Radiosynthesis of 13a. A 0.05 M NaOH solution containing 165 μ Ci of carrier-free Na¹²⁵I (PerkinElmer, 1 μ L) was added to a mixture made of **12a** (3 μ g) in EtOH (1.5 μ L), glacial acetic acid (5 μ L), and 30% hydrogen peroxide solution (5 μ L). After incubation at room temperature for 20 min, HPLC phase (MeCN/water 80/20, 10 mM AcOH buffer, pH 5, 350 μ L) was added, and **13a** was isolated by an

isocratic HPLC using a Bondclone C18 (10 μ m, 300 × 7.8 mm, Phenomenex) column at 3 mL min⁻¹. The apparent specific activity was determined thanks to a calibration curve measured using growing amounts of the cold reference compound and to UV monitoring during the HPLC purification step. The overall radiochemical yield was 56%. The apparent specific radioactivity was 240 Ci/mmol (11% of the carrier-free specific activity).

Radiosynthesis of 13b. A 0.05 M NaOH solution containing 128 μ Ci of carrier-free Na¹²⁵I (PerkinElmer, 1 μ L) was added to a mixture made of **12b** (3 μ g) in EtOH (1.5 μ L), glacial acetic acid (5 μ L), and 30% hydrogen peroxide solution (5 μ L). After incubation at room temperature for 20 min, HPLC phase (MeCN/water 80/20, 10 mM AcOH buffer, pH 5, 350 μ L) was added and **13b** was isolated by an isocratic HPLC using a Bondclone C18 (10 μ m, 300 × 7.8 mm, Phenomenex) column at 3 mL min⁻¹. The apparent specific activity was determined thanks to a calibration curve measured using growing amounts of the cold reference compound and to UV monitoring during the HPLC purification step. The overall radiochemical yield was 70%. The apparent specific radioactivity was 110 Ci/mmol (5% of the carrier-free specific activity).

Radiosynthesis of 13d. A 0.05 M NaOH solution containing 210 μ Ci of carrier-free Na¹²⁵I (PerkinElmer, 1 μ L) was added to a mixture made of **12b** (10 μ g) in EtOH (1 μ L), glacial acetic acid (5 μ L), and 30% hydrogen peroxide solution (5 μ L). After incubation at room temperature for 20 min, HPLC phase (MeCN/water 80/20, 10 mM AcOH buffer, pH 5, 350 μ L) was added and **13d** was isolated by an isocratic HPLC using a Bondclone C18 (10 μ m, 300 × 7.8 mm, Phenomenex) column at 3 mL min⁻¹. The apparent specific activity was determined thanks to a calibration curve measured using growing amounts of the cold reference compound and to UV monitoring during the HPLC purification step. The overall radiochemical yield was 85%. The apparent specific radioactivity was 280 Ci/mmol (13% of the carrier-free specific activity).

Radiosynthesis of [¹²⁵I]1. A 0.05 M NaOH (1 μ L) solution containing 210 μ Ci of carrier -free Na¹²⁵I (PerkinElmer) was added to a mixture made of 1 trimethylstannyl precursor (ERAS Labo, 100 μ g) in a mixture containing EtOH (10 μ L), glacial acetic acid (5 μ L), and 30% hydrogen peroxide solution (5 μ L). After an incubation at room temperature for 20 min, HPLC phase (MeCN/water 30/70, 10 mM H₃PO₄ 350 μ L) was added and [¹²⁵I]1 was isolated by an isocratic HPLC using a Bondclone C18 (10 μ m, 300 × 7.8 mm, Phenomenex) column at 3 mL min⁻¹. The apparent specific activity was determined thanks to a calibration curve measured using growing amounts of the cold reference compound and to UV monitoring during the HPLC purification step. After collection, pooling, and evaporation of the corresponding fractions, the overall radiochemical yield of iodination with ¹²⁵I was 70%. The apparent specific radioactivity was 146 Ci/ mmol (6.6% of the carrier-free specific activity).

In Vitro Competition Experiments. For each in vitro autoradiographic experiment, frozen rat brain coronal sections at the level of the striatum and accumbens nucleus were thawed and dried, preincubated in 50 mM Tris-HCl pH = 7.4 for 5 min at room temperature, and then incubated in the same buffer with given concentrations of the radioligand for 30 min at room temperature. During this step, competition experiments were done by incubating the sections with 100 pM of [¹²⁵I]1 and various concentrations of 11d. After incubation, sections were washed three times for 5 min in ice-cold buffer, dipped in ice-cold deionized water, and rapidly dried under a cold air stream. The labeled sections were exposed on phosphorimaging plates overnight before detection with a Fujifilm BAS scanner.

In Vivo Competition Experiments. For the in vivo competition experiment, a mouse was injected intravenously with a saline solution containing a dose of 50 μ g/kg of 11d and 30 μ Ci [¹²⁵I]1 (146 Ci/mmol specific activity, 6.6% of the carrier free). The animal was then sacrificed with CO₂, and 20- μ m-thin cryosections were collected in SHT₄R-rich regions (striatum, accumbens nucleus, olfactive tubercles), and finally exposed overnight on phosphorimaging plates before detection with a Fujifilm BAS scanner.

Molecular Modeling Study. *Receptor Model.* First, the sequence of the human 5-HT₄R was retrieved from the UniProt Knowledgebase

(UniProtKB)⁴⁷ (ID: Q712M9_HUMAN). Using screening methods like FUGUE,⁴⁸ SP3,⁴⁹ PSIBLAST,^{50,51} HHSEARCH,⁵² and the @ tome-2 server,⁵³ the β 2 adrenergic receptor has been identified as the best 3D experimental template for the homology modeling of the 5-HT₄R (sequence identity = 40%). The high-resolution (2.4 Å) crystal structure of the human β 2 adrenergic receptor (β 2AR)-T4 lysozyme fusion protein bound to the carazolol (PDB ID: 2RH1)³³ was used as the 3D template. The alignment between the two sequences was manually optimized to avoid insertions and deletions in secondary structure elements (see Supporting Information for final sequence alignment). The disulfide bond C93–C184 between the transmembrane helix 3 (TM3) and the extracellular loop (ECL2) was conserved. This alignment was used as the basis for the homology modeling with the Modeler software.⁵⁴ The resulting model was then evaluated by methods like verify3D⁵⁵ and Eval23D.⁵⁶

Docking Studies. The docking of the compounds into the 5-HT₄R was carried out with the GOLD program (v 5.0) using the default parameters.^{57,58} This program applies a genetic algorithm to explore conformational spaces and ligand binding modes. To evaluate the proposed ligand positions, the ChemScore fitness function was applied in these docking studies. The binding site in the 5-HT₄R model was defined as a 10 Å sphere centered on the aspartic acid residue Asp₁₀₀. Because the mutagenesis studies have shown that the interaction between the positively ionizable amine of ligands and Asp100 of 5-HT₄R is crucial for ligand binding, a hydrogen bond constraint between positively ionizable amine ligand and OD atom of Asp₁₀₀ was used during the docking.³⁶ Furthermore, special attention was paid during the docking procedure to the following amino acids in the binding site, which were kept flexible: Arg₉₆, Asp₁₀₀, Thr₁₀₄, Tyr₁₉₂, Ser₁₉₇, and Trp₂₉₄. For 4v docking, a second hydrogen bond constraint between the tricycle nitrogen and the hydroxyl group of Tyr₁₉₂ was added. For the two crystal conformers available for each compound, a dozen separate docking procedures were carried out and analyzed.

ASSOCIATED CONTENT

S Supporting Information

X-ray crystallographic data of compounds 4c, 4d, 4g, 4h, 4j, 4m, 4p, 4q, 4r, 4v, and 11d and amino acid sequences alignment of 5-HT₄R and human β 2-adrenergic receptor. This material is available free of charge via the Internet at http:// pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*Phone: +33(0)231566808. E-mail: frederic.fabis@unicaen.fr.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank the National Institute of Mental Health's Psychoactive Drug Screening Program, Contract #HHSN-271-2008-00025-C (NIMH PDSP) which generously provided K_i determinations and functional assays. The NIMH PDSP is Directed by Bryan L. Roth MD, Ph.D. at the University of North Carolina at Chapel Hill and Project Officer Jamie Driscol at NIMH, Bethesda, MD. We thank Aurélien Lesnard for helpful management of biological results. This work was in part supported by the Swiss National Science Foundation (Grant No. 310030_120369).

REFERENCES

(1) Dumuis, A.; Bouhelal, R.; Sebben, M.; Bockaert, J. A 5-HT receptor in the central nervous system, positively coupled with adenylate cyclase, is antagonized by ICS 205930. *Eur. J. Pharmacol.* **1988**, *146*, 187–188.

(2) Dumuis, A.; Bouhelal, R.; Sebben, M.; Cory, R.; Bockaert, J. A non-classical 5-hydroxytryptamine receptor positively coupled with adenylate cyclase in the central nervous system. *Mol. Pharmacol.* **1988**, *34*, 880–887.

(3) Bureau, R.; Boulouard, M.; Dauphin, F.; Lezoualc'h, F.; Rault, S. Review of 5-HT₄R ligands: State of arts and clinical applications. *Curr. Top. Med. Chem.* **2010**, *10*, 527–553.

(4) Lucas, G. Serotonin receptors type 4: A new hope? Curr. Drug Targets 2009, 10, 1085–1095.

(5) Beattie, D. T.; Smith, J. A. M. Serotonin pharmacology in the gastrointestinal tract: A review. *Naunyn-Schmiedeberg's Arch. Pharmacol.* **2008**, 377, 181–203.

(6) Qvigstad, E.; Brattelid, T.; Sjaastad, I.; Andressen, K. W.; Krobert, K. A.; Birkeland, J. A.; Sejersted, O. M.; Kaumann, A. J.; Skomedal, T.; Osnes, J. B.; Levy, F. O. Appearance of a ventricular 5-HT4 receptormediated inotropic response to serotonin in heart failure. *Cardiovasc. Res.* **2005**, *65*, 869–878.

(7) Eglen, R. M.; Wong, E. H. F.; Dumuis, A.; Bockaert, J. Central 5-HT₄ receptors. *TIPS* **1995**, *16*, 391–398.

(8) Matsumoto, M.; Togashi, H.; Mori, K.; Hueno, K.; Ohashi, S.; Kogima, T.; Yoshioka, M. Evidence for involvement of central 5-HT4 receptors in cholinergic function associated with cognitive processes: Behavioural, electrophysiological, and neurochemical studies. *J. Pharmacol. Exp. Ther.* **2001**, *296*, 676–682.

(9) Meneses, A.; Hong, E. Effects of 5-HT₄ receptor agonists and antagonists in learning. *Pharmacol., Biochem. Behav.* **1997**, *56*, 347–351.

(10) Lezoualc'h, F. 5-HT₄ receptor and Alzheimer's disease: The amyloid connection. *Exp. Neurol.* **2007**, 205, 325–329.

(11) Cho, S.; Hu, Y. Activation of 5-HT₄ receptors inhibits secretion of beta-amyloid peptides and increases neuronal survival. *Exp. Neurol.* **2007**, 203, 274–278.

(12) Jean, A.; Conductier, G.; Manrique, C.; Bouras, C.; Berta, P.; Hen, R.; Charnay, Y.; Bockaert, J.; Compan, V. Anorexia induced by activation of serotonin 5-HT₄ receptors is mediated by increases in CART in the nucleus accumbens. *Proc. Natl. Acad. Sci. U. S. A.* **2007**, *104*, 16335–16340.

(13) Lucas, G.; Rymar, W.; Du, J.; Mnie-Filali, O.; Bisgaard, C.; Manta, S.; Lambas-Senas, L.; Wiborg, O.; Haddjeri, N.; Pineyro, G.; Sadikot, A. F.; Debonnel, G. Serotonin(4) (5-HT(4)) receptor agonists putative antidepressant with a rapid onset of action. *Neuron* **2007**, 55, 712–725.

(14) Manabe, N.; Wong, B. S.; Camilleri, M. New generation 5-HT4 receptor agonists: Potential for for treatment of gastrointestinal motility disorders. *Expert Opin. Invest. Drugs* **2010**, *19*, 765–775.

(15) Moser, P. C.;, E.; Bergis, O.; Jegham, S.; Lochead, A.; Duconseille, E.; Terranova, J.-P.; Caille, D.; Berque-Bestel, I.; Lezoualc'h, F.; Fischmeister, R.; Dumuis, A.; Bockaert, J.; George, P.; Soubrie, P.; Scatton, B. SL65.0155, a novel 5-hydroxytryptamine4 receptor partial agonist with potent cognition-enhancing properties. *J. Pharmacol. Exp. Ther.* **2002**, *302*, 731–742.

(16) Mohler, E. G.; Shacham, S.; Noiman, S.; Lezoualc'h, F.; Robert, S.; Gastineau, M.; Rutkowski, J.; Marantz, Y.; Dumuis, A.; Bockaert, J.; Gold, P. E.; Ragozzino, M. E. VRX-03011, a novel 5-HT4 agonist, enhances memory and hippocampal acetylcholine efflux. *Neuropharmacology* **2007**, *53*, 563–573.

(17) Wong, D. F.; Gründer, G.; Brasić, J. R. Brain imaging research: Does the science serve clinical practice? *Int. Rev. Psychiatry* **200**7, *19*, 541–558.

(18) Gibson, R. E.; Burns, H. D.; Hamill, T. G.; Eng, W. S.; Francis, B. E.; Ryan, C. Non-invasive radiotracer imaging as a tool for drug development. *Curr. Radiopharm. Des.* **2000**, *6*, 973–989.

(19) Pike, V. W.; Halldin, C.; Nobuhara, K.; Hiltunen, J.; Mulligan, R. S.; Swahn, C.-G.; Karlsson, P.; Olsson, H.; Hume, S. P.; Hirani, E.; Whalley, J.; Pilowsky, L. S.; Larson, S.; Schnell, P.-O.; Ell, P. J.; Farde, L. Radioiodinated SB 207710 as a radioligand in vivo: Imaging of brain 5-HT4 receptors with SPET. *Eur. J. Nucl. Med. Mol. Imaging* **2003**, *30*, 1520–1528.

(20) Gee, A. D.; Martarello, L.; Passchier, J.; Wishart, M.; Parker, C.; Matthews, J.; Comley, R.; Hopper, R.; Gunn, R. Synthesis and evaluation of $[^{11}C]$ SB207145 as the first in vivo serotonin 5-HT₄ receptor radioligand for PET imaging in man. *Curr. Radiopharm.* **2008**, *1*, 110–114.

(21) Kornum, B. R.; Lind, N. M.; Gillings, N.; Marner, L.; Andersen, F.; Knudsen, G. M. *J. Cereb. Blood Flow Metab.* **2009**, *29*, 186–196.

(22) Madsen, K.; Haahr, M. T.; Marner, L.; Keller, S. H.; Baaré, W. F.; Svarer, C.; Hasselbalch, S. G.; Knudsen, G. M. Age and sex effects on 5-HT(4) receptors in the human brain: A [(11)C]SB207145 PET study. J. Cereb. Blood Flow Metab. 2011, 31, 1475–1481.

(23) Marner, L.; Gillings, N.; Madsen, K.; Erritzoe, D.; Baaré, W. F.; Svarer, C.; Hasselbalch, S. G.; Knudsen, G. M. Brain imaging of serotonin 4 receptors in humans with [11C]SB207145-PET. *Neuroimage* **2010**, *50*, 855–861.

(24) Xu, R.; Hong, J.; Morse, C. L.; Pike, V. W. Synthesis, structure– affinity relationships, and radiolabeling of selective high-affinity 5-HT₄ receptor ligands as prospective imaging probes for positron emission tomography. J. Med. Chem. **2010**, *53*, 7035–7047.

(25) Hinschberger, A.; Butt, S.; Lelong, V.; Boulouard, M.; Dumuis, A.; Fauphin, F.; Bureau, R.; Pfeiffer, B.; Renard, P.; Rault, S. New benzo[h]-1,6-naphthyridine and azepino[3,2-c]quinoleine derivatives as selective antagonists of 5-HT₄ receptors: Binding profile and pharmacological characterization. *J. Med. Chem.* **2003**, *46*, 138–147.

(26) Lemaitre, S.; Lepailleur, A.; Bureau, R.; Butt-Gueulle, S.; Lelong-Boulouard, V.; Duchatelle, P.; Boulouard, M.; Dumuis, A.; Daveu, C.; Lezoualc'h, F.; Pfeiffer, B.; Dauphin, F.; Rault, S. Novel antagonists of serotonin-4 receptors: Synthesis and biological evaluation of pyrrolothienopyrazines. *Bioorg. Med. Chem.* **2009**, *17*, 2607–2622.

(27) Dubost, E.; Magnelli, R.; Cailly, T.; Legay, R.; Fabis, F.; Rault, S. General method for the synthesis of substituted phenanthridin-6(*SH*)-ones using a KOH-mediated anionic ring closure as the key step. *Tetrahedron* **2010**, *66*, 5008–5016.

(28) See experimental data for details.

(29) Donohue, S. R.; Varnäs, K.; Jia, Z.; Gulyás, B.; Pike, V. W.; Halldin, C. Synthesis and in vitro autoradiographic evaluation of a novel high affinity radioiodinated ligand for imaging brain cannabinoid subtype-1 receptors. *Bioorg. Med. Chem. Lett.* **2009**, *19*, 6209–6212.

(30) Kaumann, A. J. Blockade of human atrial 5-HT₄ receptors by GR 113808. *Br. J. Pharmacol.* **1993**, *110*, 1172–1174.

(31) Kaumann, A. J.; Gaster, L. M.; King, F. D.; Brown, A. M. Blockade of human atrial 5-HT₄ receptors by SB 207710, a selective and high affinity 5-HT4 receptor antagonist. *Naunyn-Schmiedeberg's Arch. Pharmacol.* **1994**, 349, 546–548.

(32) Kenakin, T. Efficacy as a vector: The relative prevalence and paucity of inverse agonism. *Mol. Pharmacol.* **2004**, *66*, 2–11.

(33) Cherezov, V.; Rosenbaum, D. M.; Hanson, M. A.; Rasmussen, S. G.; Thian, F. S.; Kobilka, T. S.; Choi, H. J.; Kuhn, P.; Weis, W. I.; Kobilka, B. K.; Stevens, R. C. High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. *Science* **2007**, *318*, 1258–1265.

(34) Rosenbaum, D. M.; Cherezov, V.; Hanson, M. A.; Rasmussen, S. G.; Thian, F. S.; Kobilka, T. S.; Choi, H. J.; Yao, X. J.; Weis, W. I.; Stevens, R. C.; Kobilka, B. K. GPCR Engineering yields high-resolution structural insights into $\beta 2$ adrenergic receptor function. *Science* **2007**, *318*, 1266–1273.

(35) Moukhametzianov, R.; Warne, T.; Edwards, P. C.; Serrano-Vega, M. J.; Leslie, A. G.; Tate, C. G.; Schertler, G. F. Two distinct conformations of helix 6 observed in antagonist-bound structures of a beta1-adrenergic receptor. *Proc. Natl, Acad. Sci. U. S. A.* **2011**, *108*, 8228–8232.

(36) Rivail, L.; Giner, M.; Gastineau, M.; Berthouze, M.; Soulier, J.-L.; Fischmeister, R.; Lezoualc'h, F.; Maigret, B.; Sicsic, S.; Berque-Bestel, I. New insights into the human S-HT4 receptor binding site: Exploration of a hydrophobic pocket. *Br. J. Pharmacol.* **2004**, *143*, 361–370.

(37) Warne, A.; Moukhametzianov, R.; Baker, J. G.; Nehme, R.; Edwards, P. C.; Leslie, A. G. W.; Schertler, G. F. X.; Tate, C. G. The structural basis for agonist and partial agonist action on a β_1 -adrenergic receptor. *Nature* **2011**, *469*, 241–244.

(38) Wu, H.; Wacker, D.; Katritch, V.; Mileni, M.; Han, G. W.; Vardy, E.; Liu, W.; Thompson, A. A.; Huang, X. P.; Carroll, F. I.; Mascarella, S. W.; Westkaemper, R. B.; Mosier, P. D.; Roth, B. L.; Cherezov, V.; Stevens, R. C. Structure of the human κ -opioid receptor in complex with JDTic. *Nature* **2012**, 485, 327–332.

(39) Waterhouse, R. N. Determination of lipophilicity and its use as a predictor of blood brain barrier penetration of molecular imaging agents. *Mol. Imaging Biol.* **2005**, *5*, 376–389.

(40) Bedjeguelal, K.; Rabot, R.; Kaloun El B.; Mayer P.; Marchand A.; Rahier N.; Schambel P.; Bienayme H. Pyrazolopyridine derivatives as anticancer agent. PCT Int. Appl. WO 2011045344 (A1), 2011.

(41) Kristensen, J. L.; Vedsø, V.; Begtrup, M. Synthesis of pentacyclic 13-azadibenzo[*a*,*de*]anthracenes via anionic cascade ring closure. *J. Org. Chem.* **2003**, *68*, 4091–4092.

(42) Heiss, C.; Marzi, E.; Mongin, F.; Schlosser, M. Remote trimethylsilyl groups interfering with the *ortho* deprotonation of fluoroarenes and chloroarenes. *Eur. J. Org. Chem.* **2007**, 669–675.

(43) Kawaksaki, M.; Goto, M.; Kawabata, S.; Kometani, T. The effect of vinyl esters on the enantioselectivity of the lipase-catalysed transesterification of alcohols. *Tetrahedron: Asymmetry* **2001**, *12*, 585–596.

(44) Grossman, C. J.; Kilpatrick, G. J.; Bunc, K. T. Development of a radioligand binding assay for 5-HT₄ receptors in guinea pig and rat brain. *Br. J. Pharmacol.* **1993**, *109*, 618–624.

(45) Lowry, O. H.; Rosebrough, N. J.; Farr, A. L.; Randall, R. J. Protein measurement with the folin phenol reagent. *J. Biol. Chem.* **1951**, *193*, 265–275.

(46) Allen, J. A.; Yost, J. M.; Setola, V.; Chen, X.; Sassano, M. F.; Chzn, M.; Peterson, S.; Yadav, P. N.; Huang, X. P.; Feng, B.; Jensen, N. H.; Che, X.; Bai, X.; Frye, S. V.; Wetsel, W. C.; Caron, M. G.; Javitch, J. A.; Roth, B. L.; Jin, J. Discovery of β -arrestin-biased dopamine D₂ ligandsfor probing signal transduction pathways essential for antipsychotic efficacy. *Proc. Natl. Acad. Sci. U. S. A.* **2011**, *108*, 18488–18493.

(47) Jain, E.; Bairoch, A.; Duvaud, S.; Phan, I.; Redaschi, N.; Suzek, B. E.; Martin, M. J.; McGarvey, P.; Gasteiger, E. Infrastructure for the life sciences: Design and implementation of the UniProt website. *BMC Bioinf.* **2009**, *10*, 136–155.

(48) Shi, J.; Blundell, T. L.; Mizuguchi, K. FUGUE: Sequencestructure homology recognition using environment-specific substitution tables and structure-dependent gap penalties. *J. Mol. Biol.* **2001**, *310*, 243–257.

(49) Zhou, H.; Zhou, Y. Fold recognition by combining sequence profiles derived from evolution and from depth-dependent structural alignment of fragments. *Proteins* **2005**, *58*, 321–328.

(50) Altschul, S. F.; Madden, T. L.; Schäffer, A. A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D. J. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. *Nucleic Acids Res.* **1997**, *25*, 3389–3402.

(51) Schäffer, A. A.; Aravind, L.; Madden, T. L.; Shavirin, S.; Spouge, J. L.; Wolf, Y. I.; Koonin, E. V.; Altschul, S. F. Improving the accuracy of PSI-BLAST protein database searches with composition-based statistics and other refinements. *Nucleic Acids Res.* **2001**, *29*, 2994–3005.

(52) Soding, J. Protein homology detection by HMM-HMM comparison. *Bioinformatics* **2005**, *21*, 951–960.

(53) Pons, J. L.; Labesse, G. @TOME-2: A new pipeline for comparative modeling of protein–ligand complexes. *Nucleic Acids Res.*, **2009**, *37*, Web Server issue W485–W491.

(54) Eswar, N.; Eramian, D.; Webb, B.; Shen, M.; Sali, A. Protein structure modeling with MODELLER. *Methods Mol. Biol.* **2008**, 426, 145–159.

(55) Eisenberg, D.; Lüthy, R.; Bowie, J. U. VERIFY3D: Assessment of protein models with three-dimensional profiles. *Methods Enzymol.* **1997**, 277, 396–404.

(56) Gracy, J.; Chiche, L.; Sallantin, J. Improved alignment of weakly homologous protein sequences using structural information. *Protein Eng.* **1993**, *6*, 821–829.

(57) Jones, G.; Willett, P.; Glen, R. C. Molecular recognition of receptor sites using a genetic algorithm with a description of desolvation. *J. Mol. Biol.* **1995**, 245, 43–53.

(58) Jones, G.; Willett, P.; Glen, R. C.; Leach, A. R.; Taylor, R. Development and validation of a genetic algorithm for flexible docking. *J. Mol. Biol.* **1997**, *267*, 727–748.